用数学归纳法证明:1+1/2^2+1/3^2+...+1/n^2<(2n-1)/n
3个回答
2013-07-08
展开全部
证明:1+1/2^2+1/3^2+...+1/n^2<(2n-1)/n (n>=2,n属于N*)
1)1+1/2^2=5/4 < 3/2
2) 设:1+1/2^2+1/3^2+...+1/k^2<(2k-1)/k,
1+1/2^2+1/3^2+...+1/k^2+1/(k+1)^2<(2k-1)/k+1/(k+1)^2
=(2k^3+4k^2+2k-k^2-2k-1+k)/k(k+1)^2
=2-(k-1)/k(k+1)<[2(k+1)-1]/(k+1)
也就是如果n=k时成立能推出n=k+1也成立
所以,1+1/2^2+1/3^2+...+1/n^2<(2n-1)/n
1)1+1/2^2=5/4 < 3/2
2) 设:1+1/2^2+1/3^2+...+1/k^2<(2k-1)/k,
1+1/2^2+1/3^2+...+1/k^2+1/(k+1)^2<(2k-1)/k+1/(k+1)^2
=(2k^3+4k^2+2k-k^2-2k-1+k)/k(k+1)^2
=2-(k-1)/k(k+1)<[2(k+1)-1]/(k+1)
也就是如果n=k时成立能推出n=k+1也成立
所以,1+1/2^2+1/3^2+...+1/n^2<(2n-1)/n
2013-07-08
展开全部
应该有说明n≥2吧?
证明:
①n=2时,1/1^2+1/2^2=5/4 < (2×2-1)/2=3/2 成立;
②假设n=k(k≥2)时,1+1/2^2+1/3^2+...+1/k^2<(2k-1)/k 成立;
则:n=k+1时,
1+1/2^2+1/3^2+...+1/k^2+1/(k+1)^2
<(2k-1)/k + 1/(k+1)^2
=(2k-1)(k+1) / [k(k+1)] + 1/(k+1)^2
<(2k-1)(k+1) / [k(k+1)] + 1 / [k(k+1)]
=[(2k-1)(k+1)+1]/ [k(k+1)]
=k(2k+1) / [k(k+1)]
=(2k+1) / (k+1)
=[2(k+1)-1 ] / (k+1) 成立 ;
∴综上:1+1/2^2+1/3^2+...+1/n^2<(2n-1)/n (n≥2)
证明:
①n=2时,1/1^2+1/2^2=5/4 < (2×2-1)/2=3/2 成立;
②假设n=k(k≥2)时,1+1/2^2+1/3^2+...+1/k^2<(2k-1)/k 成立;
则:n=k+1时,
1+1/2^2+1/3^2+...+1/k^2+1/(k+1)^2
<(2k-1)/k + 1/(k+1)^2
=(2k-1)(k+1) / [k(k+1)] + 1/(k+1)^2
<(2k-1)(k+1) / [k(k+1)] + 1 / [k(k+1)]
=[(2k-1)(k+1)+1]/ [k(k+1)]
=k(2k+1) / [k(k+1)]
=(2k+1) / (k+1)
=[2(k+1)-1 ] / (k+1) 成立 ;
∴综上:1+1/2^2+1/3^2+...+1/n^2<(2n-1)/n (n≥2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-07-08
展开全部
不是小于等于号吗?因为当n=1时它不成立啊!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询