如图,已知圆O:x^2+y^2=R^2(R>0)与直线x+√3y-4=0相切,(高一数学、圆的)
如图,已知圆O:x^2+y^2=R^2(R>0)与直线x+√3y-4=0相切,以圆O与x轴的左交点T为圆心作半径r的圆T,设圆T与圆O交与点M与点N.(1)求圆0的方程。...
如图,已知圆O:x^2+y^2=R^2(R>0)与直线x+√3y-4=0相切,以圆O与x轴的左交点T为圆心作半径r的圆T,设圆T与圆O交与点M与点N.
(1)求圆0的方程。(2)求向量TM*向量TN的最小值,并求此时圆T的方程。(3)设点P是圆O上异于M,N的任意一点,且直线MP,NP分别与x轴交与点R,S,O为坐标原点,求证:|OR|*|OS|为定值。
跪求大神回答!!!回答好有得加分、明天考试了...... 展开
(1)求圆0的方程。(2)求向量TM*向量TN的最小值,并求此时圆T的方程。(3)设点P是圆O上异于M,N的任意一点,且直线MP,NP分别与x轴交与点R,S,O为坐标原点,求证:|OR|*|OS|为定值。
跪求大神回答!!!回答好有得加分、明天考试了...... 展开
2个回答
展开全部
(1) 圆心为原点,与直线x+√3y-4=0的距离为半径R = |0 + 0*√3 - 4|/√(1 + 3) = 2
圆的方程: x²+ y² = 4
(2)
T(-2, 0)
圆T的方程: (x + 2)² + y² = r²
圆的方程相减, 得M. N的横坐标: x = (r² - 8)/4
代入x² + y² = 4: y² = (16r² - r⁴)/16
M((r² - 8)/4, √(16r² - r⁴)/4), N((r² - 8)/4, -√(16r² - r⁴)/4)
向量TM = ((r² - 8)/4 + 2, √(16r² - r⁴)/4 - 0) = (r²/4, √(16r² - r⁴)/4)
向量TN = ((r² - 8)/4 + 2, -√(16r² - r⁴)/4 - 0) = (r²/4, -√(16r² - r⁴)/4)
二者的点乘为r⁴/16 - (16r² - r⁴)/16 = [(r² - 4)² - 16]/8
r² = 4时, 积最小
圆T的方程: (x + 2)² + y² = 4
(3)
为了简便,记a = (r² - 8)/4, b = √(16r²; - r⁴)/4, 则M(a, b), N(a - b)
P(u, v), u² + v² = 4
PM的方程: (y - b)/(v - b) = (x - a)/(u - a), y = 0, x = (av - bu)/(v - b), R((av - bu)/(v - b), 0)
PN的方程: (y + b)/(v + b) = (x - a)/(u - a), y = 0, x = (av + bu)/(v + b), S((av + bu)/(v + b), 0)
|OR|*|OS| = |(a²v² - b²u²)/(v² - b²)|
= |[a²(4 - u²) - b²u²]/(4 - u² - b²)|
= |[4a² - (a² + b²)u²]/[4 - b² - u²)
= |4(a² - u²)/(a² - u²)|
= 4
圆的方程: x²+ y² = 4
(2)
T(-2, 0)
圆T的方程: (x + 2)² + y² = r²
圆的方程相减, 得M. N的横坐标: x = (r² - 8)/4
代入x² + y² = 4: y² = (16r² - r⁴)/16
M((r² - 8)/4, √(16r² - r⁴)/4), N((r² - 8)/4, -√(16r² - r⁴)/4)
向量TM = ((r² - 8)/4 + 2, √(16r² - r⁴)/4 - 0) = (r²/4, √(16r² - r⁴)/4)
向量TN = ((r² - 8)/4 + 2, -√(16r² - r⁴)/4 - 0) = (r²/4, -√(16r² - r⁴)/4)
二者的点乘为r⁴/16 - (16r² - r⁴)/16 = [(r² - 4)² - 16]/8
r² = 4时, 积最小
圆T的方程: (x + 2)² + y² = 4
(3)
为了简便,记a = (r² - 8)/4, b = √(16r²; - r⁴)/4, 则M(a, b), N(a - b)
P(u, v), u² + v² = 4
PM的方程: (y - b)/(v - b) = (x - a)/(u - a), y = 0, x = (av - bu)/(v - b), R((av - bu)/(v - b), 0)
PN的方程: (y + b)/(v + b) = (x - a)/(u - a), y = 0, x = (av + bu)/(v + b), S((av + bu)/(v + b), 0)
|OR|*|OS| = |(a²v² - b²u²)/(v² - b²)|
= |[a²(4 - u²) - b²u²]/(4 - u² - b²)|
= |[4a² - (a² + b²)u²]/[4 - b² - u²)
= |4(a² - u²)/(a² - u²)|
= 4
追问
能不能原创的- -
追答
有点懒,呵呵
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询