高中圆锥曲线,第二问不会写?

第一问的答案是,Y^2=4x。抛物线焦点为F。点A的坐标(1,1)。第二问:点D(a,2)在Y^2=4x上,过点A作直线交该抛物线于不同于点D的两点B,C,若直线BD,C... 第一问的答案是,Y^2=4x。抛物线焦点为F。点A的坐标(1,1)。第二问:点D(a,2)在Y^2=4x上,过点A作直线交该抛物线于不同于点D的两点B,C,若直线BD ,CD分别交直线l:2x-y+2=0于P,Q,求当丨PQ丨取最小值时,点F到,直线BC的距离。 展开
 我来答
路人__黎
高粉答主

2021-01-13 · 说的都是干货,快来关注
知道大有可为答主
回答量:3.7万
采纳率:80%
帮助的人:1亿
展开全部

(2)∵点D在抛物线W上

∴2²=4x0,则x0=1,即:D(1,2)

设点B(x1,y1),C(x2,y2)

∵yD=2>1=yA

∴点A在抛物线W内,即:点A在点B,C之间

∴设直线BC为x=m(y-1) + 1,(m≠0)

与抛物线方程联立:y²=4[m(y-1) + 1]

整理得:y² - 4my + 4(m-1)=0

由韦达定理:y1 + y2=4m,

y1y2=4(m-1)

设直线BD为y=k1(x-1) + 2

与直线y=2x+2联立:k1(x-1)+2=2x+2

解得:x=k1/(k1 - 2)

即:xP=k1/(k1 - 2)

由直线的斜率公式:k1=(y1 - 2)/(x1 - 1)

∵y1²=4x1,则x1=y1²/4

∴k1=(y1 - 2)/(y1²/4 - 1)=4/(y1 + 2)

∴xP=-2/y1,同理:xQ=-2/y2

则yP=-4/y1 + 2,yQ=-4/y2 + 2

∴|PQ|=√(xP - xQ)² + (yP - yQ)²

=√20/y1² - 40/y1y2 + 20/y2²

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式