3个回答
展开全部
方差(Variance)是实际值与期望值之差平方的平均值,
而标准差(Standard deviation)是方差平方根.
而标准差(Standard deviation)是方差平方根.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
均值描述的是样本集合的中间点,它告诉我们的信息是很有限的,而标准差给我们描述的则是样本集合的各个样本点到均值的距离之平均。
以这两个集合为例,[0,8,12,20]和[8,9,11,12],两个集合的均值都是10,但显然两个集合差别是很大的,计算两者的标准差,前者是8.3,后者是1.8,显然后者较为集中,故其标准差小一些,标准差描述的就是这种“散布度”。
之所以除以n-1而不是除以n,是因为这样能使我们以较小的样本集更好的逼近总体的标准差,即统计上所谓的“无偏估计”。而方差则仅仅是标准差的平方.
上面几个统计量看似已经描述的差不多了,但我们应该注意到,标准差和方差一般是用来描述一维数据的,但现实生活我们常常遇到含有多维数据的数据集,面对这样的数据集,我们当然可以按照每一维独立的计算其方差,但是通常我们还想了解更多.协方差就是这样一种用来度量两个随机变量关系的统计量.
协方差的结果有什么意义呢?如果结果为正值,则说明两者是正相关的(从协方差可以引出“相关系数”的定义).而协方差也只能处理二维问题,那维数多了自然就需要计算多个协方差,使用对称矩阵,且对角线是各个维度上的方差。协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的
以这两个集合为例,[0,8,12,20]和[8,9,11,12],两个集合的均值都是10,但显然两个集合差别是很大的,计算两者的标准差,前者是8.3,后者是1.8,显然后者较为集中,故其标准差小一些,标准差描述的就是这种“散布度”。
之所以除以n-1而不是除以n,是因为这样能使我们以较小的样本集更好的逼近总体的标准差,即统计上所谓的“无偏估计”。而方差则仅仅是标准差的平方.
上面几个统计量看似已经描述的差不多了,但我们应该注意到,标准差和方差一般是用来描述一维数据的,但现实生活我们常常遇到含有多维数据的数据集,面对这样的数据集,我们当然可以按照每一维独立的计算其方差,但是通常我们还想了解更多.协方差就是这样一种用来度量两个随机变量关系的统计量.
协方差的结果有什么意义呢?如果结果为正值,则说明两者是正相关的(从协方差可以引出“相关系数”的定义).而协方差也只能处理二维问题,那维数多了自然就需要计算多个协方差,使用对称矩阵,且对角线是各个维度上的方差。协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询