解方程:(x+1)/(x+2)+(x+6)/(x+7)=(x+2)/(x+3)+(x+5)/(x+6)
2个回答
展开全部
原方程可化为:
1 - 1/(x+2) + 1 - 1/(x+7)=1 - 1/(x+3) + 1 - 1/(x+6)
即有:1/(x+3) - 1/(x+2)=1/(x+7) - 1/(x+6)
左右两边分别通分得:-1/[(x+3)(x+2)]=-1/[(x+7)(x+6)]
则有:(x+3)(x+2)=(x+7)(x+6)
x²+5x+6=x²+13x+42
移项整理得:8x=-36
解得:x=-4.5
经检验,原方程的解为:x=-4.5
1 - 1/(x+2) + 1 - 1/(x+7)=1 - 1/(x+3) + 1 - 1/(x+6)
即有:1/(x+3) - 1/(x+2)=1/(x+7) - 1/(x+6)
左右两边分别通分得:-1/[(x+3)(x+2)]=-1/[(x+7)(x+6)]
则有:(x+3)(x+2)=(x+7)(x+6)
x²+5x+6=x²+13x+42
移项整理得:8x=-36
解得:x=-4.5
经检验,原方程的解为:x=-4.5
展开全部
(x+1)/(x+2)+(x+6)/(x+7)=(x+2)/(x+3)+(x+5)/(x+6)
∴(x+2-1)/(x+2)+(x+7-1)/(x+7) =(x+3-1)/(x+3) +(x+6-1)/(x+6)
∴1-1/(x+2)+1-1/(x+7)=1-1/(x+3)+1-1/(x+6)
∴-1/(x+2)-1/(x+7)=-1/(x+3)-1/(x+6)
∴1/(x+2)+1/(x+7)=1/(x+3)+1/(x+6)
∴1/(x+2)-1/(x+3)=1/(x+6)-1/(x+7)
∴(x+3-(x+2))/(x+2)(x+3)=(x+7-(x+6))/(x+6)(x+7)
∴1/(x+2)(x+3)=1/(x+6)(x+7)
∴(x+2)(x+3)=(x+6)(x+7)
∴x²+5x+6=x²+13x+42
∴8x=-36
∴x=-9/2
∴(x+2-1)/(x+2)+(x+7-1)/(x+7) =(x+3-1)/(x+3) +(x+6-1)/(x+6)
∴1-1/(x+2)+1-1/(x+7)=1-1/(x+3)+1-1/(x+6)
∴-1/(x+2)-1/(x+7)=-1/(x+3)-1/(x+6)
∴1/(x+2)+1/(x+7)=1/(x+3)+1/(x+6)
∴1/(x+2)-1/(x+3)=1/(x+6)-1/(x+7)
∴(x+3-(x+2))/(x+2)(x+3)=(x+7-(x+6))/(x+6)(x+7)
∴1/(x+2)(x+3)=1/(x+6)(x+7)
∴(x+2)(x+3)=(x+6)(x+7)
∴x²+5x+6=x²+13x+42
∴8x=-36
∴x=-9/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询