概率论的由来
2013-07-13
展开全部
概率论
probability theory
研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象。每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。事件的概率则是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2。又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性。大数定律及中心极限定理就是描述和论证这些规律的。在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程。例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程。随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题。概率论与实际生活有着密切的联系,它在自然科学、技术科学、社会科学、军事和工农业生产中都有广泛的应用。
概率论的起源与赌博问题有关。16世纪,意大利的学者开始研究掷骰子等赌博中的一些简单问题。17世纪中叶,法国数学家B.帕斯卡、P.de费马及荷兰数学家C.惠更斯基于排列组合方法,研究了一些较复杂的赌博问题,他们解决了分赌注问题、赌徒输光问题等。随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学家J.伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。随后A.de棣莫弗和P.S.拉普拉斯 又导出了第二个基本极限定理(中心极限定理)的原始形式。拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。19世纪末,俄国数学家P.L.切比雪夫、A.A.马尔可夫、A.M.李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。20世纪初受物理学的刺激,人们开始研究随机过程。这方面A.N.柯尔莫哥洛夫、N.维纳、A.A.马尔可夫、A.R辛钦、P.莱维及W.费勒等人作了杰出的贡献。
如何定义概率,如何把概率论建立在严格的逻辑基础上,是概率理论发展的困难所在,对这一问题的探索一直持续了3个世纪。20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。在这种背景下,苏联数学家柯尔莫哥洛夫1933年在他的《概率论基础》一书中第一次给出了概率的测度论的定义和一套严密的公理体系。他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支,对概率论的迅速发展起了积极的作用。
probability theory
研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象。每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。事件的概率则是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2。又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性。大数定律及中心极限定理就是描述和论证这些规律的。在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程。例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程。随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题。概率论与实际生活有着密切的联系,它在自然科学、技术科学、社会科学、军事和工农业生产中都有广泛的应用。
概率论的起源与赌博问题有关。16世纪,意大利的学者开始研究掷骰子等赌博中的一些简单问题。17世纪中叶,法国数学家B.帕斯卡、P.de费马及荷兰数学家C.惠更斯基于排列组合方法,研究了一些较复杂的赌博问题,他们解决了分赌注问题、赌徒输光问题等。随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学家J.伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。随后A.de棣莫弗和P.S.拉普拉斯 又导出了第二个基本极限定理(中心极限定理)的原始形式。拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。19世纪末,俄国数学家P.L.切比雪夫、A.A.马尔可夫、A.M.李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。20世纪初受物理学的刺激,人们开始研究随机过程。这方面A.N.柯尔莫哥洛夫、N.维纳、A.A.马尔可夫、A.R辛钦、P.莱维及W.费勒等人作了杰出的贡献。
如何定义概率,如何把概率论建立在严格的逻辑基础上,是概率理论发展的困难所在,对这一问题的探索一直持续了3个世纪。20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。在这种背景下,苏联数学家柯尔莫哥洛夫1933年在他的《概率论基础》一书中第一次给出了概率的测度论的定义和一套严密的公理体系。他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支,对概率论的迅速发展起了积极的作用。
2013-07-13
展开全部
概率论起源于15世纪中叶.尽管任何一个数学分支的产生与发展都不外乎是社会生产、科学技术自身发展的推动,然而概率论的产生,却肇事于所谓的“赌金分配问题”.1494年意大利数学家帕西奥尼(1445-1509)出版了一本有关算术技术的书.书中叙述了这样的一个问题:在一场赌博中,某一方先胜6局便算赢家,那么,当甲方胜了4局,乙方性了3局的情况下,因出现意外,赌局被中断,无法继续,此时,赌金应该如何分配?帕西奥尼的答案是:应当按照4:3的比例把赌金分给双方.当时,许多人都认为帕西奥尼的分法不是那么公平合理.因为,已胜了4局的一方只要再胜2局就可以拿走全部的赌金,而另一方则需要胜3局,并且只少有2局必须连胜,这样要困难得多.但是,人们又找不到更好的解决方法.在这以后100多年中,先后有多位数学家研究过这个问题,但均未得到过正确的答案.
直到1654年一位经验丰富的法国赌徒默勒以自己的亲身经历向帕斯卡请教“赌金分配问题”,引起了这位法国天才数学家的兴趣,并促成了帕斯卡与费马这两位大数学家之间就此问题展开的异乎寻常频繁的通信,他们分别用了自己的方法独立而又正确地解决了这个问题.
费马的解法是,如果继续赌局,最多只要再赌4轮便可决出胜负,如果用“甲”表示甲方胜,用“乙”表示乙方胜,那么最后4轮的结果,不外乎以下16种排列.
甲甲甲甲 甲甲乙乙 甲乙乙乙
甲甲甲乙 甲乙甲乙 乙甲乙乙
甲甲乙甲 甲乙乙甲 乙乙甲乙
甲乙甲甲 乙乙甲甲 乙乙乙甲
乙甲甲甲 乙甲乙甲 乙乙乙乙
乙甲甲乙
甲方胜 乙方胜
在这16种排列中,当甲出现2次或2次以上时,甲方获胜,这种情况共有11种;当乙出现3次或3次以上时,乙方胜出,这种情况共有5种.因此,赌金应当按11:5比例分配.
帕斯卡解决这个问题则利用了他的“算术三角形”,欧洲人常称之为“帕斯卡三角形”.事实上,早在北宋时期中国数学家贾宪就在《黄帝九章算法细草》中讨论过,后经南宋数学家杨辉加以完善,并载入其著作《详解九章算法》一书中.这就是我们常说的杨辉三角形.
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
…… …… …… …… ……
贾宪对此三角形的研究比帕斯卡早了600余年, 杨辉也比帕斯卡早了400余年。
帕斯卡利用这个三角形求从n件物品中一次取出r件的组合数 ,由上图可知,三角形第五行上的数恰好是 ,其中 是甲出现4次的组合数, 是甲出现3次的组合数等等.因此赌金应按照 的比例分配,这与费马得到的结果是完全一致的.
人称“数学怪杰”的意大利数学家卡当也曾专门探讨过赌博中骰子出点的规律.据说,卡当参加过这样的一种赌博:把两颗骰子掷出去,以骰子朝上的点数之作为赌的内容.已知骰子的六个面上分别为1-6点,那么,赌注下在多少点上最有利?卡当曾预言说押在7最好.事实上,两个骰子朝上的面共有36种可能,点数之和分别可为2-12共11种,(如下图)
2
3
4
5
6
7
3
4
5
6
7
8
4
5
6
7
8
9
5
6
7
8
9
10
6
7
8
9
10
11
7
8
9
10
11
12
从图中可以看出,7是最容易出现的和数,它出现的概率是 .
帕斯卡和费马以“赌金分配问题”开始的通信形式讨论,开创了概率论研究的先河.后来荷兰数学家惠更斯(1629-1695)也参加了这场讨论,并写出了关于概率论的第一篇正式论文《赌博中的推理》.帕斯卡、费马、惠更斯一起被誉为概率论的创始人.事至今日,概率论已经在各行各业中得到了广泛的应用,发展成为一门极其重要的数学学科.
直到1654年一位经验丰富的法国赌徒默勒以自己的亲身经历向帕斯卡请教“赌金分配问题”,引起了这位法国天才数学家的兴趣,并促成了帕斯卡与费马这两位大数学家之间就此问题展开的异乎寻常频繁的通信,他们分别用了自己的方法独立而又正确地解决了这个问题.
费马的解法是,如果继续赌局,最多只要再赌4轮便可决出胜负,如果用“甲”表示甲方胜,用“乙”表示乙方胜,那么最后4轮的结果,不外乎以下16种排列.
甲甲甲甲 甲甲乙乙 甲乙乙乙
甲甲甲乙 甲乙甲乙 乙甲乙乙
甲甲乙甲 甲乙乙甲 乙乙甲乙
甲乙甲甲 乙乙甲甲 乙乙乙甲
乙甲甲甲 乙甲乙甲 乙乙乙乙
乙甲甲乙
甲方胜 乙方胜
在这16种排列中,当甲出现2次或2次以上时,甲方获胜,这种情况共有11种;当乙出现3次或3次以上时,乙方胜出,这种情况共有5种.因此,赌金应当按11:5比例分配.
帕斯卡解决这个问题则利用了他的“算术三角形”,欧洲人常称之为“帕斯卡三角形”.事实上,早在北宋时期中国数学家贾宪就在《黄帝九章算法细草》中讨论过,后经南宋数学家杨辉加以完善,并载入其著作《详解九章算法》一书中.这就是我们常说的杨辉三角形.
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
…… …… …… …… ……
贾宪对此三角形的研究比帕斯卡早了600余年, 杨辉也比帕斯卡早了400余年。
帕斯卡利用这个三角形求从n件物品中一次取出r件的组合数 ,由上图可知,三角形第五行上的数恰好是 ,其中 是甲出现4次的组合数, 是甲出现3次的组合数等等.因此赌金应按照 的比例分配,这与费马得到的结果是完全一致的.
人称“数学怪杰”的意大利数学家卡当也曾专门探讨过赌博中骰子出点的规律.据说,卡当参加过这样的一种赌博:把两颗骰子掷出去,以骰子朝上的点数之作为赌的内容.已知骰子的六个面上分别为1-6点,那么,赌注下在多少点上最有利?卡当曾预言说押在7最好.事实上,两个骰子朝上的面共有36种可能,点数之和分别可为2-12共11种,(如下图)
2
3
4
5
6
7
3
4
5
6
7
8
4
5
6
7
8
9
5
6
7
8
9
10
6
7
8
9
10
11
7
8
9
10
11
12
从图中可以看出,7是最容易出现的和数,它出现的概率是 .
帕斯卡和费马以“赌金分配问题”开始的通信形式讨论,开创了概率论研究的先河.后来荷兰数学家惠更斯(1629-1695)也参加了这场讨论,并写出了关于概率论的第一篇正式论文《赌博中的推理》.帕斯卡、费马、惠更斯一起被誉为概率论的创始人.事至今日,概率论已经在各行各业中得到了广泛的应用,发展成为一门极其重要的数学学科.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |