怎么求极限?

 我来答
吉禄学阁

2023-10-19 · 吉禄学阁,来自davidee的共享
吉禄学阁
采纳数:13655 获赞数:62482

向TA提问 私信TA
展开全部

极限的计算公式有以下几种:


                                   


  1. 第一个重要极限的公式:lim sinx / x = 1 (x->0),当x→0时,sin / x的极限等于1。
  2. 第二个重要极限的公式:lim (1+1/x) ^x = e(x→∞),当x→∞时,(1+1/x)^x的极限等于e。
  3. 极限的四则运算法则:极限的四则运算法则是基于一些常见的极限,再根据下面的法则求极限,包括相反的收敛数列极限相反、互为倒数的收敛数列极限也互为倒数,其中除数不为零、和差积商的极限等于极限的和差积商、收敛的正项数列的幂的极限等于极限的幂等。
  4. 极限的单调有界定理:有界性是数列收敛的必要条件,如果数列无界,就一定发散,但有界数列却不一定收敛。
  5. 价无穷小替换:要熟记常见的等价无穷小的类型。
  6. 用洛必达法则求极限:针对0/0型或无穷/无穷型,对分子分母同时求导后求极限的方法。
  7. 利用泰勒公式求极限:可以用泰勒公式来近似求出某些函数在某一点的极限,尤其是当求解高阶极限时更为方便。
baochuankui888
高粉答主

2023-01-12 · 醉心答题,欢迎关注
知道答主
回答量:60
采纳率:100%
帮助的人:8940
展开全部

极限属于微积分的基础概念,解法如下:

解析:

x/(x+sinx)=1/(1+sinx/x)

∵ -1≤sinx≤1

∴ sinx有界

又∵ x->+∞时,lim(1/x)=0

∴ lim[(sinx)(1/x)]=0

∴ lim[x/(x+sinx)]=1/(1+0)=1

扩展资料:

性质

1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。

2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。

但是,如果一个数列有界,这个数列未必收敛。例如数列 :“1,-1,1,-1,……,(-1)n+1”

3、与子列的关系:数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列

收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。

单调收敛定理

单调有界数列必收敛

函数极限

设函数  在点  的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数  (无论它多么小),总存在正数 ,使得当x满足不等式  时,对应的函数值  

都满足不等式:|f(x)-A|<ε,则称函数f当x趋于+∞时以A为极限,记作lim f(x) = A 或 f(x)->A(x->+∞)

参考资料:百度百科——lim

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式