如何区分离散型和连续性随机变量

 我来答
惠企百科
2022-12-11 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部

1、定义不同

离散型随机变量:全部可能取到的不相同的值是有限个或可列无限多个,也可以说概率1以一定的规律分布在各个可能值上。

连续性随机变量:能按一定次序一一列出,其值域为一个或若干个有限或无限区间。

2、随机变量的可取值不同

离散型随机变量的取值是离散的,连续性随机变量的取值不是离散的。

扩展资料

对于集合{xn,n=1,2,??}中的任何一个子集A,事件“X在A中取值”即“X∈A”的概率为

P{X∈A}=∑Pn

特别的,如果一个试验所包含的事件只有两个,其概率分布为

P{X=x1}=p(0<p<1)

P{X=x2}=1-p=q

这种分布称为两点分布。 如果x1=1,x2=0,有

P{X=1}=p

P{X=0}=q

这时称X服从参数为p的0-1分布,它是离散型随机变量分布中最简单的一种。由于是数学家伯努利最先研究发现的,为了纪念他,我们也把服从这种分布的试验叫伯努利试验。习惯上,把伯努利的一种结果称为“成功”,另一种称为“失败”。

参考资料来源:百度百科-离散性随机变量

参考资料来源:百度百科-连续型随机变量

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式