如何区分离散型和连续性随机变量
1个回答
2022-12-11 · 百度认证:北京惠企网络技术有限公司官方账号
关注
展开全部
1、定义不同
离散型随机变量:全部可能取到的不相同的值是有限个或可列无限多个,也可以说概率1以一定的规律分布在各个可能值上。
连续性随机变量:能按一定次序一一列出,其值域为一个或若干个有限或无限区间。
2、随机变量的可取值不同
离散型随机变量的取值是离散的,连续性随机变量的取值不是离散的。
扩展资料
对于集合{xn,n=1,2,??}中的任何一个子集A,事件“X在A中取值”即“X∈A”的概率为
P{X∈A}=∑Pn
特别的,如果一个试验所包含的事件只有两个,其概率分布为
P{X=x1}=p(0<p<1)
P{X=x2}=1-p=q
这种分布称为两点分布。 如果x1=1,x2=0,有
P{X=1}=p
P{X=0}=q
这时称X服从参数为p的0-1分布,它是离散型随机变量分布中最简单的一种。由于是数学家伯努利最先研究发现的,为了纪念他,我们也把服从这种分布的试验叫伯努利试验。习惯上,把伯努利的一种结果称为“成功”,另一种称为“失败”。
参考资料来源:百度百科-离散性随机变量
参考资料来源:百度百科-连续型随机变量
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询