如何判断一个数列属不属于等差数列?

 我来答
知识改变命运7788
高能答主

2023-01-01 · 只要付出,就有收获,好好学习。
知识改变命运7788
采纳数:1341 获赞数:7431

向TA提问 私信TA
展开全部

等差数列公式为:Sn=a1*n+[n*(n-1)*d]/2。

等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。

例如:1,3,5,7,9…2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。

相关信息:

①数列必须满足有序性。比如说集合{1,2,3,4},它表示n=1时,an=1;n=2时,an=2,以此类推。所以它与{1,3,2,4}是两个不同的集合,二者虽然定义域值域都相同,但是对应关系不同。而{1,2,3,4}与{1,3,2,4}是同一个集合。

②数列不必满足互异性。我们知道集合的元素必须满足互异性,即任意两个元素不能够重复,而数列中的项与项之间可以相等。所以在数列中,摇摆数列,周期数列,常数列都是被允许的。如数列an=sin(nπ/2)就是一个典型的周期数列。因为数列本质上是函数,函数的因变量取值可以相等,所以数列的不同项也可以相等。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式