已知,在三角形ABC中,AB=AC,延长AB到D,使BD=AB,E为AB的中点,求证:CD=2CE
3个回答
展开全部
证明:延长CE到F,使EF=CE,连接BF
∵AB=AC
∴∠ABC=∠ACB
∵E为AB的中点
∴AE=BE
∵EF=CE,∠AEC=∠BEF
∴△AEC≌△BEF (SAS)
∴∠ABF=∠A,FB=AC
∴FB=AB
∵BD=AB
∴BD=FB
∵∠CBF=∠ABC+∠ABF,∠CBD=∠ACB+∠A
∴∠CBF=∠CBD
∴BC=BC
∴△BCD≌△BCF (SAS)
∴CD=CF
∵CF=CE+EF=2CE
∴CD=2CE
数学辅导团解答了你的提问,理解请及时采纳为最佳答案。
∵AB=AC
∴∠ABC=∠ACB
∵E为AB的中点
∴AE=BE
∵EF=CE,∠AEC=∠BEF
∴△AEC≌△BEF (SAS)
∴∠ABF=∠A,FB=AC
∴FB=AB
∵BD=AB
∴BD=FB
∵∠CBF=∠ABC+∠ABF,∠CBD=∠ACB+∠A
∴∠CBF=∠CBD
∴BC=BC
∴△BCD≌△BCF (SAS)
∴CD=CF
∵CF=CE+EF=2CE
∴CD=2CE
数学辅导团解答了你的提问,理解请及时采纳为最佳答案。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
取AC的中点F,连接BF,根据中点的性质可得到AE=AF,再根据SAS判定△ABF≌△ACE,由全等三角形的对应边相等可得到BF=CE,再利用三角形中位线定理得到DC=2BF,即证得了DC=2CE. 解答:证明:取AC的中点F,连接BF, ∵AB=AC,点E,F分别是AB,AC的中点, ∴AE=AF, ∵∠A=∠A,AB=AC, ∴△ABF≌△ACE(SAS), ∴BF=CE, ∵BD=AB,AF=CF, ∴DC=2BF, ∴DC=2CE.
追问
延长CE到F,连接BF,CE=EF 用全等的证法
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询