怎么证明函数的奇偶性?

 我来答
俱怀逸兴壮思飞欲上青天揽明月
2022-10-14 · TA获得超过12.9万个赞
知道大有可为答主
回答量:1.4万
采纳率:78%
帮助的人:2940万
展开全部
证明函数的奇偶性的方法如下:
首先要看函数的定义域是否关于y轴对称,如果定义域不是关于y轴对称的,则是非奇非偶函数。如果定义域关于y轴对称了:
1.能证明该函数f(x)=f(-x),则是偶函数。
2.能证明该函数f(-x)=-f(x),则是奇函数。
3.如果不符合1和2的,则是非奇非偶函数。

函数奇偶性的定义:
一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)=f(-x),那么函数xf就叫偶函数。一般地,如果对于函数xf的定义域内任意一个x,都有f(-x)=-f(x),那么函数xf就叫奇函数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式