初中因式分解方法
因式分解的基本技巧主要有三个: 提取公因式 、 公式法 、 十(双)字相乘法 ;高阶技巧主要有三个: 因式定理法 、 待定系数法 、 轮换对称法 。
什么是因式分解把一个多项式化为几个整式乘积的形式,这种变形叫做因式分解(也叫作分解因式),它是中学数学中最重要的恒等变形之一.
因式分解没有普遍适用的方法,往往需要观察题目中多项式的形式、次数、系数特征,具体问题具体来分析.
初中数学教材中主要介绍了提公因式法和公式法,考试也以这两种方法为主。当然除此之外,我们还有十字相乘法,分组分解法,拆项和添减项法,待定系数法,双十字相乘法,换元法等内容需要给大家介绍.
因式分解的原则在学习方法之前我们先来介绍一下因式分解的原则:
(1)结果一定是乘积的形式;
(2)每一个因式都是整式;
(3)相同因式的积要写成幂的形式;
(4)每个因式中不能含有同类项,如果有需要合并的同类项,合并后要注意能否再分解;
(5)没有大括号和中括号;
(6)单项式因式写在多项式因式的前面;
(7)多项式因式第一项系数一般不为负;
(8)如无特别说明,因式分解的结果必须是每个因式在有理数范围内不能再分解为止.
接下来我们按照优先级来逐一介绍因式分解的几种方法。
因式分解具体方法
技巧1:提公因式法
如果多项式的各项有公因式,将公因式提到括号外面.
确定公因式的方法:(1)系数——取多项式各项系数的最大公约数;(2)字母(或多项式因式)——取各项都含有的字母(或多项式因式)的最低次幂.易错点:提公因式后项数不变,易漏掉常数项.
技巧2:公式法
技巧3:十字相乘法