在平面直角坐标系中,直线l1经过A(2,0)且与y轴平行,直线l2经过点B(0,1)且与x轴平行
函数y=k/x(x大于0,k>0且k≠2)连接OE、OF、EF。若△OEF为直角三角形,求k值...
函数y=k/x(x大于0,k>0且k≠2)连接OE、OF、EF。若△OEF为直角三角形,求k值
展开
1个回答
展开全部
在平面直角坐标系中,直线L₁经过A(2,0)且与y轴平行,直线L₂经过点B(0,1)且与x轴平行;函数y=k/x
(x大于0,k>0且k≠2)与L₁相交于E;与L₂相交于F,连接OE、OF、EF。若△OEF为直角三角形,求k值.
解:E(2,k/2);F(k,1);OF所在直线的斜率KOF=1/k;OF⊥EF;
故EF所在直线的斜率KEF=(k/2-1)/(2-k)=(k-2)/[2(2-k)]=-k;
即有k-2=-k(4-2k);即有2k²-5k+2=(2k-1)(k-2)=0,故得k₁=1/2;k₂=2(舍去);
故取k=1/2,函数y=k/x的表达式为y=1/2x.
(x大于0,k>0且k≠2)与L₁相交于E;与L₂相交于F,连接OE、OF、EF。若△OEF为直角三角形,求k值.
解:E(2,k/2);F(k,1);OF所在直线的斜率KOF=1/k;OF⊥EF;
故EF所在直线的斜率KEF=(k/2-1)/(2-k)=(k-2)/[2(2-k)]=-k;
即有k-2=-k(4-2k);即有2k²-5k+2=(2k-1)(k-2)=0,故得k₁=1/2;k₂=2(舍去);
故取k=1/2,函数y=k/x的表达式为y=1/2x.
追问
我们没学斜率,能不能用其他方法,而且这里貌似有两个答案的。。= =
追答
我重作一下:
E(2,k/2);F(k,1);(这两点的坐标没问题吧?)(两点间的距离公式学过吧?)
那么,∣OF∣²=1+k²;∣EF∣²=(k-2)²+(1-k/2)²=(k²-4k+4)+(1-k+k²/4)=5k²/4-5k+5;
∣OE∣²=4+k²/4;OE⊥EF,故由勾股定理得:∣OF∣²+∣EF∣²=∣OE∣²
即有(1+k²)+(5k²/4-5k+5)=4+k²/4
化简得 2k²-5k+2=(2k-1)(k-2)=0,故得k₁=1/2;k₂=2(舍去)
即k=1/2为所求。函数y=k/x的表达式为y=1/(2x).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询