数列求和公式
数列求和公式是 Sn=(a1+an)n/2(等差), Sn=a1(1−qn)1−q(等比)。
数列求和对按照一定规律排列的数进行求和。求Sn实质上是求Sn的通项公式,应注意对其含义的理解。常见的方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和。
数列是高中代数的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要有一定的技巧。
数列:
数列(sequence of number)是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。
著名的数列有斐波那契数列,三角函数,卡特兰数,杨辉三角等。
数列中的项必须是数,它可以是实数,也可以是复数。
用符号{an}表示数列,只不过是“借用”集合的符号,它们之间有本质上的区别:1、集合中的元素是互异的,而数列中的项可以是相同的。2、集合中的元素是无序的,而数列中的项必须按一定顺序排列,也就是必须是有序的。