二次函数的对称轴有哪些性质
二次函数对称轴的开口方向和大小,位置和对称轴公式的判断方法如下:
1、二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。|a|越大,则抛物线的开口越小;|a|越小,则抛物线的开口越大。
2、一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧。(可巧记为:左同右异)
3、首先确定二次函数的一般式:y=ax^2+bx+c,然后通过二次函数的一般式 y=ax^2+bx+c 中的数字来分别确定a,b,c的值,确定a,b,c的值后,可得出对称轴公式为 x=-b/2a
4、确定二次函数的顶点式,如果是顶点式 y=a(x-h)^2+k ,则二次函数的顶点式的对称轴公式为: x=h。
扩展资料
二次函数对称轴与x,y轴的交点因素:
1、常数项c决定二次函数图像与y轴交点。
二次函数图像与y轴交于(0,C)点
顶点坐标为(h,k), 与y轴交于(0,C)。
2、a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。
k=0时,二次函数图像与x轴只有1个交点。
a<0;k<0或a>0,k>0时,二次函数图像与x轴无交点。
3、当a>0时,函数在x=h处取得最小值=k,在x<h范围内是减函数,在x>h范围内是增函数 (即y随x的变大而变大),二次函数图像的开口向上,函数的值域是y>k
当a<0时,函数在x=h处取得最大值=k,在x<h范围内是增函数,在x>h范围内是减函数 (即y随x的变大而变小),二次函数图像的开口向下,函数的值域是y<k
当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数。
参考资料:百度百科—二次函数