因式分解(x +1)^4 (x +3)^4-272请使用换元法
2个回答
展开全部
是这样的吗?
记x+2=t,
(x+1)^4+(x+3)^4-272
=(t-1)^4+(t+1)^4-272
=2t^4+12t^2-270
=2(t^2-9)(t^2+15)
=2(t-3)(t+3)(t^2+15)
=2(x-1)(x+5)(x^2+4x+19).
参考以下的做法:
(x+1)^4+(x+3)^4-272
=(x+3)^4-4^4+(x+1)^4-2^4
(平方差)
=[(x+3)^2-4^2][(x+3)^2+4^2]+[(x+1)^2-2^2][(x+1)^2+2^2]
(平方差)
=(x-1)(x+7)[(x+3)^2+4^2]+(x-1)(x+3)[(x+1)^2+2^2]
(提取公因式,再整理)
=2(x-1)(x^2+4x+19)(5+x)
记x+2=t,
(x+1)^4+(x+3)^4-272
=(t-1)^4+(t+1)^4-272
=2t^4+12t^2-270
=2(t^2-9)(t^2+15)
=2(t-3)(t+3)(t^2+15)
=2(x-1)(x+5)(x^2+4x+19).
参考以下的做法:
(x+1)^4+(x+3)^4-272
=(x+3)^4-4^4+(x+1)^4-2^4
(平方差)
=[(x+3)^2-4^2][(x+3)^2+4^2]+[(x+1)^2-2^2][(x+1)^2+2^2]
(平方差)
=(x-1)(x+7)[(x+3)^2+4^2]+(x-1)(x+3)[(x+1)^2+2^2]
(提取公因式,再整理)
=2(x-1)(x^2+4x+19)(5+x)
追问
(t-1)^4+(t+1)^4-272是怎么到下面一步的?
追答
(t-1)^4=[(t-1)^2]^2=(t^2-2t+1)^2=t^4+4t^2+1-4t^3+2t^2-4t
(t+1)^4=(t^2+2t+1)^2=t^4+4t^2+1+4t^3+2t^2+4t
故有(t-1)^4+(t+1)^4=2t^4+12t^2+2
2013-07-18
展开全部
解答:
设x+2=y.
(x+1)^4+(x+3)^4-272
=(y-1)^4+(y+1)^4-272
=2y^4+12y^2-270
=2(y^2-9)(y^2+15)
=2(y-3)(y+3)(y^2+15)
=2(x-1)(x+5)(x^2+4x+19).
设x+2=y.
(x+1)^4+(x+3)^4-272
=(y-1)^4+(y+1)^4-272
=2y^4+12y^2-270
=2(y^2-9)(y^2+15)
=2(y-3)(y+3)(y^2+15)
=2(x-1)(x+5)(x^2+4x+19).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询