已知f(x)=2x/(x+1),当x属于[1,2]时,不等式f(x)≤2m/[(x+1)|x-m|]恒成立,求实数m的取值范围。
已知f(x)=2x/(x+1),当x属于[1,2]时,不等式f(x)≤2m/[(x+1)|x-m|]恒成立,求实数m的取值范围。...
已知f(x)=2x/(x+1),当x属于[1,2]时,不等式f(x)≤2m/[(x+1)|x-m|]恒成立,求实数m的取值范围。
展开
2个回答
展开全部
a≤(e^x-1/2*x^2-3x-1)/x令g(x)=(e^x-1/2*x^2-3x-1)/xg'(x)=((x-1)e^x-1/2*x^2+1)g"(x)=x(e^x-1)>0故g'(x)=((x-1)e^x-1/2*x^2+1)单调递增g'(0)=0故g(x)=(e^x-1/2*x^2-3x-1)/x最小值为g(1/2)a≤2e^1/2 - 21/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询