
已知函数f(x)=a*2^x+b*3^x ,其中常数,a,b满足ab不等于0 若ab<0,求f(x+1)>f(x)时的x 的取值范围
1个回答
2013-07-19
展开全部
1)ab>0时,表明a,b同号
因为2^x, 3^x都在R上是增函数,所以
若a>0, 则f(x)在R上单调增
若a<0,则f(x)在R上单调减
2) 由f(x+1)>f(x), 得
2a*2^x+3b*3^x>a*2^x+b*3^x
a*2^x+2b* 3^x>0
b*1.5^x>-a/2
若b>0, 有: 1.5^x>-a/(2b), 得 x>log 1.5( -a/(2b))
若b<0, 有: 1.5^x<-a/(2b), 得 0<x<log1.5( -a/(2b))
希望对你有帮助
祝你学业进步!
因为2^x, 3^x都在R上是增函数,所以
若a>0, 则f(x)在R上单调增
若a<0,则f(x)在R上单调减
2) 由f(x+1)>f(x), 得
2a*2^x+3b*3^x>a*2^x+b*3^x
a*2^x+2b* 3^x>0
b*1.5^x>-a/2
若b>0, 有: 1.5^x>-a/(2b), 得 x>log 1.5( -a/(2b))
若b<0, 有: 1.5^x<-a/(2b), 得 0<x<log1.5( -a/(2b))
希望对你有帮助
祝你学业进步!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询