初等数论问题!!!!

欧拉函数φ(n)=24,求所有的n???以及φ(n)等于一个任意正整数的一般方法... 欧拉函数φ(n)=24,求所有的n??? 以及φ(n)等于一个任意正整数的一般方法 展开
 我来答
algbraic
推荐于2016-12-01 · TA获得超过4924个赞
知道大有可为答主
回答量:1281
采纳率:100%
帮助的人:733万
展开全部
24的约数有1, 2, 3, 4, 6, 8, 12, 24, 其中后继为素数的有1, 2, 4, 6, 12.

因此n的可能质因数有2, 3, 5, 7, 13.
可设n = 2^a·3^b·5^c·7^d·13^e.
有24 = φ(n) = φ(2^a)·φ(3^b)·φ(5^c)·φ(7^d)·φ(13^e).

分别由φ(2^a), φ(3^b), φ(5^c), φ(7^d), φ(13^e)是24的约数, 可知a ≤ 4, b ≤ 2, c, d, e ≤ 1.
可能性情况约束为有限种.
1. 若e = 1, 有φ(2^a)·φ(3^b)·φ(5^c)·φ(7^d) = φ(n)/φ(13) = 2.
可知a ≤ 2, b ≤ 1, c = d = 0.
(1) 若b = 1, φ(2^a) = 1, 可得a = 0, 1, 分别得解n = 39, 78.
(2) 若b = 0, φ(2^a) = 2, 可得a = 2, 得解n = 52.

2. 若e = 0, d = 1, 有φ(2^a)·φ(3^b)·φ(5^c) = φ(n)/φ(7) = 4.
可知a ≤ 3, b ≤ 1, c ≤ 1.
(1) 若c = 1, φ(2^a)·φ(3^b) = 1, 得b = 0, a = 0, 1, 分别得解n = 35, 70.
(2) 若c = 0, b = 1, φ(2^a) = 2, 得a = 2, 得解n = 84.
(3) 若b = c = 0, φ(2^a) = 4, 得a = 3, 得解n = 56.

3. 若d = e = 0, c = 1, 有φ(2^a)·φ(3^b) = φ(n)/φ(5) = 6.
可知b = 2, 否则左端不能被3整除.
于是φ(2^a) = 1, 得a = 0, 1, 得解n = 45, 90.

4. 若c = d = e = 0, 有φ(2^a)·φ(3^b) = 24.
同样知b = 2, 于是φ(2^a) = 4, 得a = 3, 得解n = 72.

综上, 全部解为n = 35, 39, 45, 52, 56, 70, 72, 78, 84, 90, 共10个.

以上过程可以推广为一般方法(虽然效率难以保证).
枚举φ(n)的约数, 确定n的可能的素因子.
确定各素因子的指数范围, 然后在有限的范围内枚举指数的取值.
视情况不需要枚举所有可能的组合, 而是可由已经取定的指数进一步限制未取定的指数的范围.
勤艾顿天韵
2020-06-30 · TA获得超过1142个赞
知道小有建树答主
回答量:1327
采纳率:100%
帮助的人:5.8万
展开全部
(2^n+1)/(2^m-1)(1)n=m时,(2^n+1)/(2^m-1)=(2^(n-m)(2^m-1)+2^(n-m)+1)/(2^m-1)
=2^(n-m)+(2^(n-m)+1)/(2^m-1)
可以看出原式化成一个速数加上(2^(n-m)+1)/(2^m-1)下面再比较n-m与m的大小    1。如n-m>m
,2^(n-m)+1)/(2^m-1)又可以同上面作一样的变换成一个整数和类似原式一样的一个分数,可以反复分离出整数来,最后的分数肯定是分子小于分母,也就是题中结论成立    2、如n-m<m,则就已说明,(2^n+1)/(2^m-1)化成一个整数和一个真分数的和,非整数,故题中结论成立  综合,原结论成立 
我认为初等数论问题非常复杂,我都这么辛苦作答了,给个最佳答案把,谢谢啦!
煤矸石粉碎机
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式