设a为实数,函数f(x)=e^x-2x+2a,x属于R,(1)求f(X)的单调区间与极值
1个回答
2013-07-22
展开全部
f(x)=e^x-2x+2a f'(x)=e^x-2 当x≧ln2时,f'(x)≧0,f(x)单调递增 当x<ln2时,f'(x)<0,f(x)单调递减 故函数f(x)在x=ln2处取最大值 f(ln2)=2-2ln2+2a
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询