已知函数f(x)=ln(1+x)-ax的图象在x=1处的切线与直线x+2y-1=0平行.

(Ⅰ)求实数a的值;(Ⅱ)若方程f(x)=1/4(m-3x)在[2,4]上有两个不相等的实数根,求实数m的取值范围;(参考数据:e=2.71828…)(Ⅲ)设常数p≥1,... (Ⅰ)求实数a的值;
(Ⅱ)若方程f (x)=1/4(m-3x)在[2,4]上有两个不相等的实数根,求实数m的取值范围;(参考数据:e=2.71 828…)
(Ⅲ)设常数p≥1,数列{an}满足an+1=an+ln(p-an)(n∈N*),a1=lnp,求证:an+1≥an.
展开
feirenchenbo1
2013-07-22 · TA获得超过1249个赞
知道小有建树答主
回答量:259
采纳率:0%
帮助的人:300万
展开全部
解:(I)∵f′(x)=1/(1+x)-a,
∴f′(1)=1/2-a.
由题知1/2-a=-/12,
解得a=1.

(II)由(I)有f(x)=ln(1+x)-x,
∴原方程可整理为4ln(1+x)-x=m.
令g(x)=4ln(1+x)-x,得g′(x)=4/(1+x)-1=(3-x)/(1+x),
∴当3<x≤4时g'(x)<0,当2≤x<3时g'(x)>0,g'(3)=0,
即g(x)在[2,3]上是增函数,在[3,4]上是减函数,
∴在x=3时g(x)有最大值4ln4-3.
∵g(2)=4ln3-2,g(4)=4ln5-4,
∴g(2)-g(4)=4ln3/5+2=2(2ln3/5+1)=2ln9e/25

由9e≈24.46<25,于是2ln9e/25<0.
∴g(2)<g(4).
∴m的取值范围为[4ln5-4,4ln4-3).
(III)由f(x)=ln(1+x)-x(x>-1)有f′(x)=1/1+x-1=-x/1+x,
显然f'(0)=0,当x∈(0,+∞)时,f'(x)<0,当x∈(-1,0)时,f'(x)>0,
∴f(x)在(-1,0)上是增函数,在[0,+∞)上是减函数.
∴f(x)在(-1,+∞)上有最大值f(0),而f(0)=0,
∴当x∈(-1,+∞)时,f(x)≤0,因此ln(1+x)≤x.
由已知有p>an,即p-an>0,所以p-an-1>-1.
∵an+1-an=ln(p-an)=ln(1+p-1-an),
∴由(*)中结论可得an+1-an≤p-1-an,即an+1≤p-1(n∈N*).
∴当n≥2时,an+1-an=ln(p-an)≥ln[p-(p-1)]=0,即an+1≥an.
当n=1,a2=a1+ln(p-lnp),
∵lnp=ln(1+p-1)≤p-1,
∴a2≥a1+ln[p-(p-1)]=a1,结论成立.
∴对n∈N*,an+1≥an.
来自:求助得到的回答
百度网友3c96ad1bda3
2020-02-23 · TA获得超过3.4万个赞
知道大有可为答主
回答量:1.2万
采纳率:35%
帮助的人:846万
展开全部
(II)该问中,若f(x)=14(m-3x),是这样吗?在解答中,我看不明白这个
(II)由(I)有f(x)=ln(1+x)-x,
∴原方程可整理为4ln(1+x)-x=m.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式