2013-07-25
展开全部
在物理学中,物理量之间的关系,物理变化
规律,除了用文字叙述,用方程,方程组,不等
式,比例式、三角函数、三角方程等,还可以用
相应的图象来描述。数学不仅可作为计算公式贯
穿其中,广泛用于推导公式,表达关系,描述规
律,而且它本身的逻辑作用和抽象作用来辅助物
理概念和规律的形成。掌握物理学中的数学方法,
是学好物理学的关键之一。本文仅就极值问题、
正负号问题,数学图象等在力学、热学、电学中
的应用作简单论述。
一、物理学中的正、负号
数学中的正与负反映了数的大小,但在物理
学中,正和负反映的物理意义大不相同。
1、矢量中的正和负反映了方向。在同一直线
上,一般先规定某方向为正方向,与其同向的矢
量为正值,反之为负值,这样把矢量运算化为标
量运算。例如,在直线运动中,若选初速度为V0
的方向为正方向,则加速度为负值时物体做减速
运动。又如在竖直上抛运动中,以抛点为原点,
上方位移为正,下方位移为负,向上的速度为正,
向下的速度为负,这样即可把往返运动当作一直
向上的运动处理。
例1、在离地10 米高度以5 米/秒竖直向上
抛出一物,不记阻力,问经几秒此物落地?
[析解]以抛点为原点, 向上为正,所以
V0=5m/s�0�5,s=-10m, 代入位移式S=V0·t+1/2at�0�5 有
-10=5t-5t�0�5求出t=2 秒。
2、正和负可以反映物体能量的增加减。大当
能量增加量为正值时,说明能量在增加;当能量
增加量为负值时,说明能量在减少。例如,由动
能定律可知:当合外力对物体做正功时,物体动
能增加;当合外力对物体做负功时,物体动能减
少。又如在热学中我们将吸热和对气体做功记为
正直,相反将放热和对外做功记为负值。
3、在势能大小的表示中,正和负表示势能与
标准点相比的大小。例如我们以桌面为势能的零
点,那么桌面以上的各点势能均为正,而桌面以
下的各处势能均为负值,在这种情况下正和负表
示大小。
4、在光学中,正和负表示虚和实。凸透镜的
焦距为正,透镜的焦距为负;实像的像距为正值,
虚像的像距则为负值。
二、用数学方法定义物理量
物理量分为基本量和导出量两种,从定义形
式来看,都可以用数学形式来表示。大量的可以
用以下几种数学方法定义。
1、量比定义法:就是用两个物理量的“比”
来定义一个新的物理量的方法。例如反映物质属
性或特性的密度(ρ=m/v),电场强度(E=F/q),
反映物体属性或特征的导体的电阻(R=u/I),运
动速度(v=s/t),功率(P=w/t)等。
2、乘积定义法:即用两个以上的物理量的乘
积来定义一个新的物理量的方法。例如,功( w
= F·S cosθ ),动量(p=mv), 动能 ( Ek =mv�0�5/2)
等。
3、公式变形定义法:即用已有的公式变形来
定义一个新的物理量是方法。例如,根据电阻定
律(R=ρl/s),胡克定律(f=κx),摩擦定律(f=μN),
自感电动势(ε=LΔI/Δt),得到电阻率ρ,倔强系
数K,摩擦系数μ,自感系数L。
4、和差定义法:即用物理量的和差来定义一
个新的物理量。例如,动能的增量(ΔEk= Ek2
–Ek1 ),动量的增量(ΔP= P2-P1)等。
三、极值在物理学中的应用
在物理学中经常遇到极值和最值问题,有时
用到一元二次方程的关系,有时则是三角函数的
极值等。此类题解题特点:在物理机理的基础上,
其解题关键要依赖数学手段和方法,借助于数学
技巧和技能。
例2、甲乙两辆汽车同方向行使,当t=0 时,
两车恰好相齐,它们位移随时间t 的变化规律分
别为:S 甲=10t;S 乙=2t+t�0�5,试问在什么时刻,甲车
在前时,两车相距最远?
[析解]两车相距的距离为:
ΔS= S 甲- S 乙=10t -(2t+t�0�5)=-t�0�5+8t
据二次函数的性质有:当x=-b/2a 时,ΔS 有
最大值, ΔSmax=(4ac-b�0�5)/4a, 即当t=4s 时,
ΔSmax=16m
[注]物理量的变化规律在很多场合下可以用
二次函数y=ax�0�5+bx+c 来表示,根据二次函数的性
质:x=-b/2a 时,y 有极值,极值y=(4ac-b�0�5)/4a,当
a>0 时有极小值,当a<0 时有极大值。
例3、把q0 分配给两个相距为r 的质点,使
之成为两个带电体q1 和q2,则当电量如何分配
时,两个电体之间的库仑作用力最大?
[ 析解] 两个带电体之间的库仑力为
F=kq1q2/r�0�5根据题意q1+q2=q0 为一定值,因此当
q1=q2=q0/2 时,q1q2 有最大值,也就是F 有最大
值。所以电量平均分配给两个质点时,它们之间
的库仑作用力最大,最大值Fmax=Kq0�0�5/4r�0�5.
四、图象在物理学中的应用
利用图象可以直观地反映物理量之间相互依
赖的关系,形象地表述物理规律。应用图象解题,
常常使一些复杂的问题变得简单明了,对提高我
们分析问题、解决问题的能力大有益处。
综上所述,在物理学中应用数学的求解方法
是多种多样的,同一物理过程可以用两种或两种
以上的方法求解,关键在于把物理意义和数学方
法巧妙的揉合为一体,才能收到较好的效果。由
于事物的多样性、复杂性及物理与数学两门基础
学科之间的相互渗透与交叉。故在学习中应注意
利用有关的数学知识解决物理问题,以培养自己
正确分析物理过程和运用数学工具解决物理问题
的能力。
与教师之间交叉活动的自由空间,允许窃
窃私语,允许寻求教师、同学帮助。因为我们
常会发现这样一些情况:有的同学想像力很丰
富,但动手能力较差;有的同学制作精细,但
思路狭窄,如果让这两者有机结合,取长补短,
则是最佳的组合了。即使两者水平相当,在合
作中也能得到启发,所谓“三人行,必有我师”。
同时有些活动题材、内容,需要搜集大量的材
料,可组织以小组为单位完成。如“插花”、“版
面设计”、“画脸”等创作,可以以小组为单位合
作收集材料:你准备花泥我准备鲜花,我们一
起来完成一束艺术插花;尝试四个人合作设计
一块别致的版面;相互给对方装饰一个有趣的
脸面等。在愉快的合作氛围中,在友情浓郁的
氛围中,消除表现的顾虑,快乐主动参与学习
的过程,给学生带来愉悦的审美情趣,使每个
学生都体会到集体的智慧胜过于个人,从而培
养学生团结互助、合作的好品德。这样一来,
作业的时间相对缩短,作业的质量却提高了,
何乐而不为?
没有教师心灵的参与,课堂就会像没有雨
水的春日,燥寒而缺少滋润;没有教育实践的
参与,教育研究就会像行将干涸的一潭秋水,
沉闷而无活力。把美术教育的艺术与生命艺术
合二为一,将是我们21 世纪每个美术教师的毕
生追求。
规律,除了用文字叙述,用方程,方程组,不等
式,比例式、三角函数、三角方程等,还可以用
相应的图象来描述。数学不仅可作为计算公式贯
穿其中,广泛用于推导公式,表达关系,描述规
律,而且它本身的逻辑作用和抽象作用来辅助物
理概念和规律的形成。掌握物理学中的数学方法,
是学好物理学的关键之一。本文仅就极值问题、
正负号问题,数学图象等在力学、热学、电学中
的应用作简单论述。
一、物理学中的正、负号
数学中的正与负反映了数的大小,但在物理
学中,正和负反映的物理意义大不相同。
1、矢量中的正和负反映了方向。在同一直线
上,一般先规定某方向为正方向,与其同向的矢
量为正值,反之为负值,这样把矢量运算化为标
量运算。例如,在直线运动中,若选初速度为V0
的方向为正方向,则加速度为负值时物体做减速
运动。又如在竖直上抛运动中,以抛点为原点,
上方位移为正,下方位移为负,向上的速度为正,
向下的速度为负,这样即可把往返运动当作一直
向上的运动处理。
例1、在离地10 米高度以5 米/秒竖直向上
抛出一物,不记阻力,问经几秒此物落地?
[析解]以抛点为原点, 向上为正,所以
V0=5m/s�0�5,s=-10m, 代入位移式S=V0·t+1/2at�0�5 有
-10=5t-5t�0�5求出t=2 秒。
2、正和负可以反映物体能量的增加减。大当
能量增加量为正值时,说明能量在增加;当能量
增加量为负值时,说明能量在减少。例如,由动
能定律可知:当合外力对物体做正功时,物体动
能增加;当合外力对物体做负功时,物体动能减
少。又如在热学中我们将吸热和对气体做功记为
正直,相反将放热和对外做功记为负值。
3、在势能大小的表示中,正和负表示势能与
标准点相比的大小。例如我们以桌面为势能的零
点,那么桌面以上的各点势能均为正,而桌面以
下的各处势能均为负值,在这种情况下正和负表
示大小。
4、在光学中,正和负表示虚和实。凸透镜的
焦距为正,透镜的焦距为负;实像的像距为正值,
虚像的像距则为负值。
二、用数学方法定义物理量
物理量分为基本量和导出量两种,从定义形
式来看,都可以用数学形式来表示。大量的可以
用以下几种数学方法定义。
1、量比定义法:就是用两个物理量的“比”
来定义一个新的物理量的方法。例如反映物质属
性或特性的密度(ρ=m/v),电场强度(E=F/q),
反映物体属性或特征的导体的电阻(R=u/I),运
动速度(v=s/t),功率(P=w/t)等。
2、乘积定义法:即用两个以上的物理量的乘
积来定义一个新的物理量的方法。例如,功( w
= F·S cosθ ),动量(p=mv), 动能 ( Ek =mv�0�5/2)
等。
3、公式变形定义法:即用已有的公式变形来
定义一个新的物理量是方法。例如,根据电阻定
律(R=ρl/s),胡克定律(f=κx),摩擦定律(f=μN),
自感电动势(ε=LΔI/Δt),得到电阻率ρ,倔强系
数K,摩擦系数μ,自感系数L。
4、和差定义法:即用物理量的和差来定义一
个新的物理量。例如,动能的增量(ΔEk= Ek2
–Ek1 ),动量的增量(ΔP= P2-P1)等。
三、极值在物理学中的应用
在物理学中经常遇到极值和最值问题,有时
用到一元二次方程的关系,有时则是三角函数的
极值等。此类题解题特点:在物理机理的基础上,
其解题关键要依赖数学手段和方法,借助于数学
技巧和技能。
例2、甲乙两辆汽车同方向行使,当t=0 时,
两车恰好相齐,它们位移随时间t 的变化规律分
别为:S 甲=10t;S 乙=2t+t�0�5,试问在什么时刻,甲车
在前时,两车相距最远?
[析解]两车相距的距离为:
ΔS= S 甲- S 乙=10t -(2t+t�0�5)=-t�0�5+8t
据二次函数的性质有:当x=-b/2a 时,ΔS 有
最大值, ΔSmax=(4ac-b�0�5)/4a, 即当t=4s 时,
ΔSmax=16m
[注]物理量的变化规律在很多场合下可以用
二次函数y=ax�0�5+bx+c 来表示,根据二次函数的性
质:x=-b/2a 时,y 有极值,极值y=(4ac-b�0�5)/4a,当
a>0 时有极小值,当a<0 时有极大值。
例3、把q0 分配给两个相距为r 的质点,使
之成为两个带电体q1 和q2,则当电量如何分配
时,两个电体之间的库仑作用力最大?
[ 析解] 两个带电体之间的库仑力为
F=kq1q2/r�0�5根据题意q1+q2=q0 为一定值,因此当
q1=q2=q0/2 时,q1q2 有最大值,也就是F 有最大
值。所以电量平均分配给两个质点时,它们之间
的库仑作用力最大,最大值Fmax=Kq0�0�5/4r�0�5.
四、图象在物理学中的应用
利用图象可以直观地反映物理量之间相互依
赖的关系,形象地表述物理规律。应用图象解题,
常常使一些复杂的问题变得简单明了,对提高我
们分析问题、解决问题的能力大有益处。
综上所述,在物理学中应用数学的求解方法
是多种多样的,同一物理过程可以用两种或两种
以上的方法求解,关键在于把物理意义和数学方
法巧妙的揉合为一体,才能收到较好的效果。由
于事物的多样性、复杂性及物理与数学两门基础
学科之间的相互渗透与交叉。故在学习中应注意
利用有关的数学知识解决物理问题,以培养自己
正确分析物理过程和运用数学工具解决物理问题
的能力。
与教师之间交叉活动的自由空间,允许窃
窃私语,允许寻求教师、同学帮助。因为我们
常会发现这样一些情况:有的同学想像力很丰
富,但动手能力较差;有的同学制作精细,但
思路狭窄,如果让这两者有机结合,取长补短,
则是最佳的组合了。即使两者水平相当,在合
作中也能得到启发,所谓“三人行,必有我师”。
同时有些活动题材、内容,需要搜集大量的材
料,可组织以小组为单位完成。如“插花”、“版
面设计”、“画脸”等创作,可以以小组为单位合
作收集材料:你准备花泥我准备鲜花,我们一
起来完成一束艺术插花;尝试四个人合作设计
一块别致的版面;相互给对方装饰一个有趣的
脸面等。在愉快的合作氛围中,在友情浓郁的
氛围中,消除表现的顾虑,快乐主动参与学习
的过程,给学生带来愉悦的审美情趣,使每个
学生都体会到集体的智慧胜过于个人,从而培
养学生团结互助、合作的好品德。这样一来,
作业的时间相对缩短,作业的质量却提高了,
何乐而不为?
没有教师心灵的参与,课堂就会像没有雨
水的春日,燥寒而缺少滋润;没有教育实践的
参与,教育研究就会像行将干涸的一潭秋水,
沉闷而无活力。把美术教育的艺术与生命艺术
合二为一,将是我们21 世纪每个美术教师的毕
生追求。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |