设函数f(x)=ax平方-2x+2满足1<x<4的一切x值都有f(x)>0,求实数a的取值范围
我的过程是:若a=0,则f(x)=-2x+2在(1,4)上单调递减,f(x)>f(4)=-6<0所以a≠0当a>0,(1)△<0,得a>1/2(2)△≥0则令f(x)=0...
我的过程是:
若a=0,则f(x)=-2x+2在(1,4)上单调递减,f(x)>f(4)=-6<0
所以a≠0
当a>0,
(1)△<0,得a>1/2
(2)△≥0则
令f(x)=0
得x1=1-√ ̄(1-2a)/a x2=1+√ ̄(1+2a)
根据图像可知,对称轴是不可能在(1,4)上的
因而①4<x1 或 1>x2
a∈(0,1/2〕
当a<0时
△>0且1>x1,且4<x2,a∈∅
综上a∈(0,+∞)
答案是a∈(1/2,+∞)怎么回事,我哪里不对? 展开
若a=0,则f(x)=-2x+2在(1,4)上单调递减,f(x)>f(4)=-6<0
所以a≠0
当a>0,
(1)△<0,得a>1/2
(2)△≥0则
令f(x)=0
得x1=1-√ ̄(1-2a)/a x2=1+√ ̄(1+2a)
根据图像可知,对称轴是不可能在(1,4)上的
因而①4<x1 或 1>x2
a∈(0,1/2〕
当a<0时
△>0且1>x1,且4<x2,a∈∅
综上a∈(0,+∞)
答案是a∈(1/2,+∞)怎么回事,我哪里不对? 展开
展开全部
设函数f(x)=ax平方-2x+2满足1<x<4的一切x值都有f(x)>0,求实数a的取值范围
解析:∵函数f(x)=ax平方-2x+2满足1<x<4的一切x值都有f(x)>0
f(x)=a(x^2-2/ax+2/a)=a[(x-1/a)^2+2/a-1/a^2]=a(x-1/a)^2+(2a-1)/a ( a>0)
函数f(x)对称轴为x=1/a,开口向上,最小值为(2a-1)/a
∴只要最小值>0即可满足要求
令(2a-1)/a>0==>a>1/2
∴实数a的取值范围为a>1/2
解析:∵函数f(x)=ax平方-2x+2满足1<x<4的一切x值都有f(x)>0
f(x)=a(x^2-2/ax+2/a)=a[(x-1/a)^2+2/a-1/a^2]=a(x-1/a)^2+(2a-1)/a ( a>0)
函数f(x)对称轴为x=1/a,开口向上,最小值为(2a-1)/a
∴只要最小值>0即可满足要求
令(2a-1)/a>0==>a>1/2
∴实数a的取值范围为a>1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
方程对称轴x=1/a,
分类讨论:当a<0时
1°1/a<1,则f(x)在1<x<4上单调递减;
得满足f(1)>0,f(2)>0
得a无解
2°1<1/a<4,得满足f(1/a)>0,
得a无解
3°1/a>4,同理可得a无解
当a>0时
1°1/a<1,则f(x)在1<x<4上单调递增;
有f(1)>0,f(2)>0
解得a∈(1/2,+∞)
2°1<1/a<4,
有f(1/a)>0,
解得a∈(2/3,1)
3°1/a>4,则f(x)在1<x<4上单调递减,
有f(1)>0,f(2)>0
解得a∈(1/2,+∞)
纵上所述:a∈(1/2,+∞)
分类讨论:当a<0时
1°1/a<1,则f(x)在1<x<4上单调递减;
得满足f(1)>0,f(2)>0
得a无解
2°1<1/a<4,得满足f(1/a)>0,
得a无解
3°1/a>4,同理可得a无解
当a>0时
1°1/a<1,则f(x)在1<x<4上单调递增;
有f(1)>0,f(2)>0
解得a∈(1/2,+∞)
2°1<1/a<4,
有f(1/a)>0,
解得a∈(2/3,1)
3°1/a>4,则f(x)在1<x<4上单调递减,
有f(1)>0,f(2)>0
解得a∈(1/2,+∞)
纵上所述:a∈(1/2,+∞)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
根据图像可知,对称轴是不可能在(1,4)上的 。为什么?对称轴是1/a,而当△≥0,4-8a≥0∴a≤1/2那么对称轴1/a≥2的。
应该用对称轴进行分类讨论,比如①1/a≤1②1<1/a<4③1/a≥4
应该用对称轴进行分类讨论,比如①1/a≤1②1<1/a<4③1/a≥4
追问
若对称轴在上面,(1,4)上又恒大于零,那么△≥0还成立么?笨!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
结果是对的,如果a<0.5,必然有一部分的f(x)<0.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询