解三角形:在△ABC中,角A,B,C的对边分别为a,b,c 1)若sin(A+π/6)=2cosA,求A的值
展开全部
(1)sin(A+π/6)=2cosA
sinAcosπ/6+cosAsinπ/6=2coaA
√3/2sinA+1/2cosA=2cosA
√3/2sinA=3/2cosA
tanA=√3
∴A=π/3
(2)1/3=cosA=(b²+c²-a²)/(2bc)=(9c²+c²-a²)/(6c²)
∴a²=8c²,∴a=2√2c
∴cosC=(b²+a²-c²)/(2ab)=(9c²+8c²-c²)/(12√2c²)=2√2/3
∴sinC=√(1-8/9)=1/3
sinAcosπ/6+cosAsinπ/6=2coaA
√3/2sinA+1/2cosA=2cosA
√3/2sinA=3/2cosA
tanA=√3
∴A=π/3
(2)1/3=cosA=(b²+c²-a²)/(2bc)=(9c²+c²-a²)/(6c²)
∴a²=8c²,∴a=2√2c
∴cosC=(b²+a²-c²)/(2ab)=(9c²+8c²-c²)/(12√2c²)=2√2/3
∴sinC=√(1-8/9)=1/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询