展开全部
先翻译下
(1)
Solve the separable differential equation
dy/dt=8y^4
and find the particular solution satisfying the initial condition
y(0)=-6,y(t)=?
求微分方程dy/dt=8y^4的解并且找到满足初始条件y(0)=-6的特定的解。
(2)
Find the solution to the differential equation
dy/dt=y^2(6+t)
y=8whent=1
求微分方程dy/dt=y^2(6+t)的解当t=1时y=8。
solution:
(1)dy/dt=8y^4
[1/(8y^4)]dy=dt
-1/24*y^-3=t+C
Into the y(0)=-6 get C=6
so -1/(24y^3)=t+6
(2)dy/dt=y^2(6+t)
y^-2 dy=(6+t) dt
-y^-1=6t+1/2 t^2+C
y=8whent=1 get C=-53/8
so -1/y=6t+1/2 t^2-53/8
(1)
Solve the separable differential equation
dy/dt=8y^4
and find the particular solution satisfying the initial condition
y(0)=-6,y(t)=?
求微分方程dy/dt=8y^4的解并且找到满足初始条件y(0)=-6的特定的解。
(2)
Find the solution to the differential equation
dy/dt=y^2(6+t)
y=8whent=1
求微分方程dy/dt=y^2(6+t)的解当t=1时y=8。
solution:
(1)dy/dt=8y^4
[1/(8y^4)]dy=dt
-1/24*y^-3=t+C
Into the y(0)=-6 get C=6
so -1/(24y^3)=t+6
(2)dy/dt=y^2(6+t)
y^-2 dy=(6+t) dt
-y^-1=6t+1/2 t^2+C
y=8whent=1 get C=-53/8
so -1/y=6t+1/2 t^2-53/8
追问
要写成y=?的形式。左边只能有y
追答
I'm very despise you !
(1)y=[-24(t+6)]^-1/3
(2)y=-1/(6t+1/2 t^2-53/8)
Only five points of wealth, Demand is so high.
I'll go to have a meal .Talk to you !
FUCK YOU!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询