已知函数f(x)=2(cosx)^2+cos(2x+π/3).若f(α)=√(3)/3+1,0<α<π/6,求sin2α的值
2个回答
展开全部
f(α)=2cos²α+cos(2α+π/3)
=cos2α+1+cos2αcosπ/3-sin2αsinπ/3
=3/2cos2α-√3/2 sin2α +1
=√3(sinπ/3 cos2α-cosπ/3 sin2α +1
=√3sin(π/3-2α)+1
√3sin(π/3-2α)+1=√3/3+1
sin(π/3-2α)=1/3
令A=argsin1/3
则sinA=1/3
cosA=√(1-sin²A)=2√2/3
∵ 0<α<π/6 ,0<2α<π/3 ∴ π/3>π/3-2α>0
sin(π/3-2α)=sinA
π/3-2α=A
2α=π/3-A
sin2α=sin(π/3-A)=sinπ/3 cos A-cosπ/3 sin A
=√3/2 * 2√2/3- 1/2 *1/3
=2√6/6 -1/6
=(2√6-1)/6
=cos2α+1+cos2αcosπ/3-sin2αsinπ/3
=3/2cos2α-√3/2 sin2α +1
=√3(sinπ/3 cos2α-cosπ/3 sin2α +1
=√3sin(π/3-2α)+1
√3sin(π/3-2α)+1=√3/3+1
sin(π/3-2α)=1/3
令A=argsin1/3
则sinA=1/3
cosA=√(1-sin²A)=2√2/3
∵ 0<α<π/6 ,0<2α<π/3 ∴ π/3>π/3-2α>0
sin(π/3-2α)=sinA
π/3-2α=A
2α=π/3-A
sin2α=sin(π/3-A)=sinπ/3 cos A-cosπ/3 sin A
=√3/2 * 2√2/3- 1/2 *1/3
=2√6/6 -1/6
=(2√6-1)/6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询