(a,b,c)为正整数,证明((a,b),c)=(a,b,c)。

algbraic
2013-07-26 · TA获得超过4925个赞
知道大有可为答主
回答量:1281
采纳率:100%
帮助的人:762万
展开全部
主要使用结论: 两个数的公约数一定整除它们的最大公约数.
首先, 若a, b, c中有0, 易见((a,b),c) = 0 = (a,b,c). 以下只讨论a, b, c ≠ 0的情况.
∵(a,b,c)是a, b, c的公约数, 即(a,b,c) | a, (a,b,c) | b, (a,b,c) | c,
∴(a,b,c) | (a,b), (a,b,c) | c, 即(a,b,c)是(a,b)和c的公约数,
∴(a,b,c) | ((a,b),c).
由a, b, c ≠ 0, 有((a,b),c) > 0, 于是(a,b,c) ≤ ((a,b),c).
而∵((a,b),c)是(a,b)和c的公约数, 即((a,b),c) | (a,b), ((a,b),c) | c,
∴((a,b),c) | a, ((a,b),c) | b, ((a,b),c) | c, 即((a,b),c)是a, b, c的公约数.
∴((a,b),c) ≤ (a,b,c).
于是只有((a,b),c) = (a,b,c).

至于怎么证明两个数的公约数一定整除它们的最大公约数.
这个用裴蜀(Bézout)定理, 存在整数x, y使ax+by = (a,b).
易见a, b的公约数一定整除左边, 因此也整除右边.
Bézout定理则是用带余除法证明的.
剑指书海
2013-07-26 · TA获得超过105个赞
知道答主
回答量:56
采纳率:0%
帮助的人:17.3万
展开全部
(a,b)这个运算结果应该是b吧,取最右的值,那(a,b,c)=c;((a,b),c)先运算(a,b),为b。再运算(b,c) ,为c。
即((a,b),c)=(a,b,c)。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式