在△ABC中,已知a²tanB=b²tanA,判断三角形形状。求解析,求快速,谢谢
2013-07-29 · 知道合伙人教育行家
关注
展开全部
由已知得 a^2*sinB/cosB=b^2*sinA/cosA,
据正弦定理可得 (sinA)^2*sinB/cosB=(sinB)^2*sinA/cosA ,所以 sinAcosA=sinBcosB ,
那么 2sinAcosA=2sinBcosB ,即 sin(2A)=sin(2B) ,
由于 A、B 是三角形内角,因此 2A=2B 或 2A+2B=π ,
因此 A=B 或 A+B=π/2 ,
所以,三角形是等腰三角形或直角三角形。
据正弦定理可得 (sinA)^2*sinB/cosB=(sinB)^2*sinA/cosA ,所以 sinAcosA=sinBcosB ,
那么 2sinAcosA=2sinBcosB ,即 sin(2A)=sin(2B) ,
由于 A、B 是三角形内角,因此 2A=2B 或 2A+2B=π ,
因此 A=B 或 A+B=π/2 ,
所以,三角形是等腰三角形或直角三角形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询