
解方程1/(x^2+3x+2)+1/(x^2+5x+6)+1/(x^2+7x+12)-1/(x+4)=0
1个回答
展开全部
原方程可化为:
1/[(x+1)(x+2)] + 1/[(x+2)(x+3)] +1/[(x+3)(x+4)] - 1/(x+4)=0
裂项得:
1/(x+1) - 1/(x+2) + 1/(x+2) - 1/(x+3) + 1/(x+3) - 1/(x+4) - 1/(x+4)=0
即:1/(x+1) - 2/(x+4)=0
1/(x+1) = 2/(x+4)
x+4=2x+2
解得:x=2
经检验,原方程的解为:x=2
1/[(x+1)(x+2)] + 1/[(x+2)(x+3)] +1/[(x+3)(x+4)] - 1/(x+4)=0
裂项得:
1/(x+1) - 1/(x+2) + 1/(x+2) - 1/(x+3) + 1/(x+3) - 1/(x+4) - 1/(x+4)=0
即:1/(x+1) - 2/(x+4)=0
1/(x+1) = 2/(x+4)
x+4=2x+2
解得:x=2
经检验,原方程的解为:x=2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询