如图,已知D.E是△ABC内的两点,试比较AB+AC与BD+DE+CE的大小

匿名用户
2013-08-01
展开全部
分析:结合图形,反复运用三角形的三边关系:“两边之和大于第三边”进行证明.证明:延长DE、ED分别交AB、AC于F、G,
在△AFG中:AF+AG>FG①,
在△BFD中:FB+FD>BD②,
在△EGC中:EG+GC>EC③,
∵FD+ED+EG=FG,
∴①+②+③得:
AF+FB+FD+EG+GC+AG>FG+BD+EC,
即:AB+FD+EG+AC>FG+BD+EC,
AB+AC>FG-FD-EG+BD+EC,
∴AB+AC>BD+ED+EC.点评:考查三角形的边的不等关系时,要注意三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.请采纳回答
匿名用户
2013-08-01
展开全部
AB+AC>BD+ED+EC.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式