请教一个无穷小量运算的问题

数二复习全书上讲泰勒公式的那章,90页上面有无穷小量运算的规律(其中^表示上标,如(x-a)^n表示(x-a)的n次方)规律是这样写道:(x-a)^n·o((x-a)^m... 数二复习全书上讲泰勒公式的那章,90页上面有无穷小量运算的规律(其中^表示上标,如
(x-a)^n表示(x-a)的n次方)
规律是这样写道:(x-a)^n·o( (x-a)^m) = o( (x-a)^(m+n ) ),

但是在94页左上角有个评注里面,却写着[x- 1/6 x^3 + o(x^3)]^2 = x^2 + o(x^3),想不通为什么是o(x^3),而不是o(x^4),因为如果把上面的多项式乘出来,不是有个x·o(x^3)=o(x^4),而且其他的乘积都是比x^4同阶或高阶的,那结果应该是 x^2 - 1/3 x^4 + o(x^4)啊

再有96页坐上评注里面[1/2 t^2 + o(t^2) ]^2却等于1/4 t^4 + o(t^4)

真的想不通啊,请高手求教啊,
展开
匿名用户
2013-08-01
展开全部
x^4为o(x^3)
x^2为领头阶,如果只保留领头阶,则答案为 x^2 + o(x^3)
对于x较小时,没必要保留到x^4。
后者t^4为领头阶,需要保留
追问
那如果不只保留领头阶,x^2 - 1/3 x^4 + o(x^4)是对的么?
还有。什么叫做x较小时啊,上面这个根本没说x怎么怎么小啊
追答
是对的
这里计算的是无穷小量,x自然只需要保留到领头阶
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式