已知椭圆x^2/4+y^2/3=1的左右焦点分别为F1,F2,设M为椭圆上任意一点,以M为圆心,MF1为半径作圆M,

当圆M与椭圆的右准线L有公共点是,则△MF1F2面积的最大值为... 当圆M与椭圆的右准线L有公共点是,则△MF1F2面积的最大值为 展开
生活连光
2013-08-01 · TA获得超过518个赞
知道小有建树答主
回答量:249
采纳率:0%
帮助的人:101万
展开全部
椭圆 (a>b>0)的左右焦点分别为F1,F 2,点M为椭圆上任意一点,则椭圆的焦点角形的面积为b^2tan(@/2),@是顶角,显然这里的b是根号3,那么当MF1在满足条件时最靠近上顶点是顶角最大
接下来考虑顶角@
根据计算得知,当M取上顶点,MF1<a^2/c,这时其所构成的圆到达不了右准线,因此M必在椭圆右半侧取值且越靠近上顶点顶角越大。
那么极值就是刚好与右准线相切时
离心率统一定义是动点到焦点的距离和动点到准线的距离之比
列方程MF1/(2a^2/c-MF1)=1/2
解得MF1=8/3
此时三边长分别是MF1=8/3,MF2=2a-MF1=4/3 F1F2=2c=2
这时楼主就会求面积了吧
面积貌似是4根号下15/3
你自己再算下
累死了
370116
高赞答主

2013-08-01 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.3亿
展开全部
设M(x0,y0),
x0²/4+y0²/3=1.
∵F1(-1,0),a²/c=4,
∴直线l:x=4.
由于圆M与l有公共点,
M到l的距离4-x0小于或等于圆的半径R.
R²=MF1²=(x0+1)²+y0²,
(4-x0)²≤(x0+1)2+y0²,
y0²+10x0-15≥0.
∵y0²=3(1-x0²/4),
3-3x0²/4+10x0-15≥0.
∴4/3≤x0≤2.
当x0=4/3时,|y0|=√15/3,
(S△MF1F2)max=1/2×2×√15/3=√15/3.
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-08-01
展开全部
设M(x,y)
所以MF1=ex+a,右准线为x=4

令1/2x+a≥4-x
得x≥4/3
F1F2=2c=2
所以S⊿MF1F2max=根号5/3
答案匆忙算的,可能有错误
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式