求下列函数在给定区间上的最大值与最小值
(1)f(x)=6x^2-x-2,x€[0,2](2)f(x)=x^3-27x,x€[-4,4]...
(1)f(x)=6x^2-x-2,x€[0,2]
(2)f(x)=x^3-27x,x€[-4,4] 展开
(2)f(x)=x^3-27x,x€[-4,4] 展开
3个回答
2013-08-01 · 知道合伙人教育行家
无脚鸟╰(⇀‸↼)╯
知道合伙人教育行家
向TA提问 私信TA
知道合伙人教育行家
采纳数:6742
获赞数:132160
现在为上海海事大学学生,在学习上有一定的经验,擅长数学。
向TA提问 私信TA
关注
展开全部
(1)f(x)=6x^2-x-2
求导得
f‘(x)=12x-1
令f‘(x)=0
12x-1=0
x=1/12
当x=1/12,f(x)=-49/24
当x=0,f(x)=-2
当x=2,f(x)=20
最大值为20,最小值为- 49/24
(2)f'(x)=3x^2-27
当f'(x)=0时,3x^2-27=0,x=±3
f(x)=x^3-27x
在x=±3,x==±4时的值分别为:
3^3-27*3=-54
(-3)^+27*3=54
4^3-27*4=148
(-4)^3+27^4=364
所以:函数f(x)=x^3-27x,再[-4,4]上的最大值为:364,最小值为:-54
求导得
f‘(x)=12x-1
令f‘(x)=0
12x-1=0
x=1/12
当x=1/12,f(x)=-49/24
当x=0,f(x)=-2
当x=2,f(x)=20
最大值为20,最小值为- 49/24
(2)f'(x)=3x^2-27
当f'(x)=0时,3x^2-27=0,x=±3
f(x)=x^3-27x
在x=±3,x==±4时的值分别为:
3^3-27*3=-54
(-3)^+27*3=54
4^3-27*4=148
(-4)^3+27^4=364
所以:函数f(x)=x^3-27x,再[-4,4]上的最大值为:364,最小值为:-54
更多追问追答
追问
怎样画表格?
追答
什么表格
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
1、函数图象朝上
对称轴在x=-b/2a=1/12 , 对称轴到2的距离比到0的大
所以x=2取最大值,max=20
在x=1/12取最小值,min=-49/24
2、求导。
f'(x)=3x²-27,令f'(x)=0,x=+-3
俩极值:
x=3时,f(x)=-54
x=-3时,f(x)=54
俩极端值:
x=4时, f(x)=-44
x=-4时,f(x)=44
比较后知道函数分别在x=3,x=-3取最小最大值
不懂请追问,希望可以帮到你。望及时采纳,谢谢、
对称轴在x=-b/2a=1/12 , 对称轴到2的距离比到0的大
所以x=2取最大值,max=20
在x=1/12取最小值,min=-49/24
2、求导。
f'(x)=3x²-27,令f'(x)=0,x=+-3
俩极值:
x=3时,f(x)=-54
x=-3时,f(x)=54
俩极端值:
x=4时, f(x)=-44
x=-4时,f(x)=44
比较后知道函数分别在x=3,x=-3取最小最大值
不懂请追问,希望可以帮到你。望及时采纳,谢谢、
更多追问追答
追问
怎样画表格?
追答
表格?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、对称轴为x=1/12∈[0,2]
所以,有最小值=f(1/12)=6*(1/144)-(1/12)-2=-49/24
又,f(0)=-2;f(2)=24-2-2=20
所以,最大值=f(2)=20
2、f'(x)=3x^2-27=3(x^2-9)=0时,x=3,x=-3
当x>3,或者x<-3时,f'(x)>0,f(x)递增
当-3<x<3时,f'(x)<0,f(x)递减
因为f(x)为奇函数,当x∈[0,4]时:
有最小值=f(3)=-54;最大值=f(4)=-44
那么,在x∈[-4,0]时,有最大值54,最小值44
综上,当x∈[-4,4]时,f(x)有最小值-54,最大值54
所以,有最小值=f(1/12)=6*(1/144)-(1/12)-2=-49/24
又,f(0)=-2;f(2)=24-2-2=20
所以,最大值=f(2)=20
2、f'(x)=3x^2-27=3(x^2-9)=0时,x=3,x=-3
当x>3,或者x<-3时,f'(x)>0,f(x)递增
当-3<x<3时,f'(x)<0,f(x)递减
因为f(x)为奇函数,当x∈[0,4]时:
有最小值=f(3)=-54;最大值=f(4)=-44
那么,在x∈[-4,0]时,有最大值54,最小值44
综上,当x∈[-4,4]时,f(x)有最小值-54,最大值54
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询