证明多项式f(x)=1-(x-1)(x-2)(x-3)……(x-n)在有理数域上不可约

algbraic
2013-08-02 · TA获得超过4924个赞
知道大有可为答主
回答量:1281
采纳率:100%
帮助的人:747万
展开全部
方便起见, 不妨改为证明f(x) = (x-1)(x-2)(x-3)...(x-n)-1不可约.
反证法, 假设f(x) = g(x)h(x), 其中g(x), h(x)都是次数不小于1的有理系数多项式.
由Gauss引理, 不妨设g(x)与h(x)都是首1的整系数多项式.
依次带入x = 1, 2,..., n, 可知g(k)h(k) = f(k) = -1, 对k = 1, 2,..., n.
而g(k)与h(k)都是整数,可知g(k)和h(k)只能是±1.
且g(k) = 1时h(k) = -1, 而g(k) = -1时h(k) = 1.
因此总有g(k)+h(k) = 0, 对k = 1, 2,..., n.
多项式g(x)+h(x)有n个不同的根, 但其次数 < n (g(x)与h(x)的次数都小于n),
于是g(x)+h(x)恒等于0, 但这与g(x), h(x)的最高次项系数为1矛盾.
所以f(x)不可约.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式