设集合A={x|x2+8x=0},B={x|2+2(a+2)x+a2-4=0},其中a∈R,如果A∩B=B,求实数a的取值范围
2013-08-08
展开全部
解:∵A={x|x<sup>2</sup>+8x=0}={0,-8},A∩B=B
∴BA
当B=时,方程x2+2(a+2)x+a2-4 =0无解,即△=4(a+2)2- 4(a2-4)<0,得a<-2
当B={0}或{8}时,这时方程的判别式Δ=4(a+2)2-4(a2-4)=0,得a=-2
将a=-2代入方程,解得x=0
∴满足当B={0,-8}时,可得a=2
综上可得a=2或a≤-2。
∴BA
当B=时,方程x2+2(a+2)x+a2-4 =0无解,即△=4(a+2)2- 4(a2-4)<0,得a<-2
当B={0}或{8}时,这时方程的判别式Δ=4(a+2)2-4(a2-4)=0,得a=-2
将a=-2代入方程,解得x=0
∴满足当B={0,-8}时,可得a=2
综上可得a=2或a≤-2。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询