求解该题
展开全部
f(x)=2cos^2x+√3sin2x+a
=cos2x+1+√3sin2x+a
=2sin(2x+π/6)+1+a
2kπ-π/2<2x+π/6<2kπ+π/2
kπ-π/3<x<kπ+π/6递增
=cos2x+1+√3sin2x+a
=2sin(2x+π/6)+1+a
2kπ-π/2<2x+π/6<2kπ+π/2
kπ-π/3<x<kπ+π/6递增
追答
在x∈[0,π/2] 2x+π/6=π/2 , x=π/6∈[0,π/2]
4=2sin(2x+π/6)+1+a
4==2+1+a
a=1
f(x)=1=2sin(2x+π/6)+3
sin(2x+π/6)=-1
2x+π/6=3π/2 , x=2π/3
2x+π/6=7π/2, x=5π/3不合题意
在x∈[0,π] ,只有x=2π/3能使等式成立,所以x的集合{2π/3}
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询