定义在对称区间上的任何函数都可以唯一的表示成一个偶函数和一个奇函数之和中

christcha
推荐于2017-09-05 · TA获得超过3974个赞
知道大有可为答主
回答量:1412
采纳率:100%
帮助的人:767万
展开全部
设f(x)=h(x)+g(x),其中h(x)是偶函数,g(x)是奇函数
则f(-x)=h(-x)+g(-x)=h(x)-g(x)
由此两式可解得得h(x)=[f(x)+f(-x)]/2,g(x)=[f(x)-f(-x)]/2
显然此解满足条件,且是唯一的,即
对称区间上的任何函数都可以唯一的表示成一个偶函数和一个奇函数之和
即f(x)=[f(x)+f(-x)]/2+[f(x)-f(-x)]/2
niubenben1996
2013-09-04
知道答主
回答量:9
采纳率:0%
帮助的人:3.4万
展开全部
证明如下:
设任一定义在关於原点对称的区间的函数F(x)
再设G(x)=F(-x)
令f(x)=F(x)+G(x), g(x)=F(x)-G(x)
则有:f(x)-f(-x)=F(x)+G(x)-[F(-x)+G(-x)]=F(x)+F(-x)-F(x)-F(-x)=0
故f(x)为偶函数
同理:g(x)+g(-x)=F(x)-G(x)+[F(-x)-G(-x)]=F(x)-F(-x)+F(x)-F(-x)=0
故g(x)奇为函数
於是F(x)就可以表示为:
F(x)=[f(x)+g(x)]/2,其中f(x),g(x)分别为偶函数和奇函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式