9个回答
展开全部
【带根号的极限怎么求?】
(1)换元法:√(1-x^2), 令x=sint,√(1-x^2)=|cost|
(2)去分母:[√(x^2+1)-1]/[√(x^2+1)+1]=[√(x^2+1)-1]^2/x^2
(1)换元法:√(1-x^2), 令x=sint,√(1-x^2)=|cost|
(2)去分母:[√(x^2+1)-1]/[√(x^2+1)+1]=[√(x^2+1)-1]^2/x^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-08-10
展开全部
Lim((√n2+n)-n)=lim1/[√(n2+n)+n]=lim(1/n)/[√(1+1/n)+1]=0/(1+1)=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-08-10
展开全部
用夹逼法
lim∑SIN(K/n2) (K从1到n)( n→∞)
<=
lim∑(K/n2) (K从1到n)( n→∞)
=lim(n+1)/2n ( n→∞)
=1/2
lim∑SIN(K/n2) (K从1到n)( n→∞)
>=
lim∑(K/n2)/(1+(K/n2)) (K从1到n)( n→∞)
>=
lim∑K/(n2+n) (K从1到n)( n→∞)
=1/2
=>
lim∑SIN(K/n2) (K从1到n)( n→∞)=1/2
这里用到
x/(1+x)<sinx<x (1/2*pai>x>0)(自己证)
lim∑SIN(K/n2) (K从1到n)( n→∞)
<=
lim∑(K/n2) (K从1到n)( n→∞)
=lim(n+1)/2n ( n→∞)
=1/2
lim∑SIN(K/n2) (K从1到n)( n→∞)
>=
lim∑(K/n2)/(1+(K/n2)) (K从1到n)( n→∞)
>=
lim∑K/(n2+n) (K从1到n)( n→∞)
=1/2
=>
lim∑SIN(K/n2) (K从1到n)( n→∞)=1/2
这里用到
x/(1+x)<sinx<x (1/2*pai>x>0)(自己证)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询