一道高二数学题,帮帮忙

过点p(4,2)作圆x^2+y^2=1的两条切线,切点分别为A,B,O为坐标原点,则三角形OAB的外接圆方程为... 过点p(4,2)作圆x^2+y^2=1的两条切线,切点分别为A,B,O为坐标原点,则三角形OAB的外接圆方程为 展开
頠頠蒟蒻
2013-08-09 · TA获得超过400个赞
知道小有建树答主
回答量:181
采纳率:0%
帮助的人:95.3万
展开全部
解答:连接AB,OP,则OA⊥AP,OB⊥BP,PO⊥AB,且平分AB,
∴OP=2√2,OA=1=OB,∴PA=PB=√7,
设A点坐标为A﹙m,n﹚,则:
①﹙2-m﹚²+﹙2-n﹚²=7
②m²+n²=1解得:
m=¼﹙1±√7﹚,n=¼﹙1-±√7﹚,
∴A﹙¼﹙1+√7﹚,¼﹙1-√7﹚﹚,
B﹙¼﹙1-√7﹚,¼﹙1+√7﹚﹚,
△OAB的外接圆的圆心D一定在OP上,
由P点坐标得OP直线方程是:y=x,
同时D也一定在OA的垂直平分线上,
∴OA直线方程为:y=[﹙√7-4﹚/3]x,
由中点公式得:
OA中点E坐标为E﹙½×¼﹙1+√7﹚,½×¼﹙1-√7﹚﹚,
∵DE⊥OA,
∴DE直线方程可以设:y=[-3/﹙√7-4﹚]x+b,
将E点坐标代入解得:b=﹙-1-√7﹚/3,
∴DE直线方程为:y=[-3/﹙√7-4﹚]x+﹙-1-√7﹚/3,
由DE、OP直线方程可以解得交点D坐标为:﹙1,1﹚,
而OD=√2,
∴圆D方程为:﹙x-1﹚²+﹙y-1﹚²=2。
1013374315
2013-08-09
知道答主
回答量:61
采纳率:0%
帮助的人:18.9万
展开全部
可先设切线为y-2=k(x-4),再用圆心到直线距离为1,求k。有了k之后便可求出切点,再设圆方程为一般式,三点联立求圆
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式