在⊿ABC中,角A、B、C的对边长分别为a、b、c,且A、B、C(1)若向量BA*BC=3/2,b=√3,求a+c的值成等差数列
在⊿ABC中,角A、B、C的对边长分别为a、b、c,且A、B、C(1)若向量BA*BC=3/2,b=√3,求a+c的值成等差数列(2)求2sinA-sinC的取值范围。...
在⊿ABC中,角A、B、C的对边长分别为a、b、c,且A、B、C(1)若向量BA*BC=3/2,b=√3,求a+c的值成等差数列(2)求2sinA-sinC的取值范围。
展开
1个回答
展开全部
1
A、B、C成等差数列
即:2B=A+C
即:3B=π
即:B=π/3
BA·BC=|BA||BC|*cosB
=accos(π/3)
=ac/2=3/2
即:ac=3
b^2=a^2+c^2-2accosB
=a^2+c^2-ac=3
即:(a+c)^2=3+3ac=12
故:a+c=2√3
2
A、B、C成等差数列
1) 如果:A<B<C
故设A=π/3-t,C=π/3+t,0<t<π/3
故:2sinA-sinC
=2sin(π/3-t)-sin(π/3+t)
=2sin(π/3)cost-2cos(π/3)sint-sin(π/3)cost-cos(π/3)sint
=sin(π/3)cost-3cos(π/3)sint
=√3cost/2-3sint/2
=√3cos(t+π/3)
π/3<t+π/3<2π/3
故:cos(t+π/3)∈(-1/2,1/2)
故:2sinA-sinC∈(-√3/2,√3/2)
2) 如果:A>B>C
故设A=π/3+t,C=π/3-t,0<t<π/3
故:2sinA-sinC
=2sin(π/3+t)-sin(π/3-t)
=2sin(π/3)cost+2cos(π/3)sint-sin(π/3)cost+cos(π/3)sint
=sin(π/3)cost+3cos(π/3)sint
=√3cost/2+3sint/2
=√3sin(t+π/6)
π/6<t+π/6<π/2
故:sin(t+π/3)∈(1/2,1)
故:2sinA-sinC∈(√3/2,√3)
A、B、C成等差数列
即:2B=A+C
即:3B=π
即:B=π/3
BA·BC=|BA||BC|*cosB
=accos(π/3)
=ac/2=3/2
即:ac=3
b^2=a^2+c^2-2accosB
=a^2+c^2-ac=3
即:(a+c)^2=3+3ac=12
故:a+c=2√3
2
A、B、C成等差数列
1) 如果:A<B<C
故设A=π/3-t,C=π/3+t,0<t<π/3
故:2sinA-sinC
=2sin(π/3-t)-sin(π/3+t)
=2sin(π/3)cost-2cos(π/3)sint-sin(π/3)cost-cos(π/3)sint
=sin(π/3)cost-3cos(π/3)sint
=√3cost/2-3sint/2
=√3cos(t+π/3)
π/3<t+π/3<2π/3
故:cos(t+π/3)∈(-1/2,1/2)
故:2sinA-sinC∈(-√3/2,√3/2)
2) 如果:A>B>C
故设A=π/3+t,C=π/3-t,0<t<π/3
故:2sinA-sinC
=2sin(π/3+t)-sin(π/3-t)
=2sin(π/3)cost+2cos(π/3)sint-sin(π/3)cost+cos(π/3)sint
=sin(π/3)cost+3cos(π/3)sint
=√3cost/2+3sint/2
=√3sin(t+π/6)
π/6<t+π/6<π/2
故:sin(t+π/3)∈(1/2,1)
故:2sinA-sinC∈(√3/2,√3)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询