3个回答
2013-08-10
展开全部
定义
椭圆是一种圆锥曲线(也有人叫圆锥截线的)
1、平面上到两点距离之和为定值的点的集合(该定值大于两点间距离,一般称为2a)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距);
2、平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。这两个定义是等价的
标准方程
高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程中的“标准”指的是中心在原点,对称轴为坐标轴。
椭圆的标准方程有两种,取决于焦点所在的坐标轴:
1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1 (a>b>0)
2)焦点在Y轴时,标准方程为:x^2/b^2+y^2/a^2=1 (a>b>0)
其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长.短半轴的关系:b^2=a^2-c^2 ,准线方程是x=a^2/c和x=-a^2/c
又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。既标准方程的统一形式。
椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ
标准形式的椭圆在x0,y0点的切线就是 : xx0/a^2+yy0/b^2=1
椭圆的面积公式
S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长).
或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长).
椭圆的周长公式
椭圆周长没有公式,有积分式或无限项展开式。
椭圆周长(L)的精确计算要用到积分或无穷级数的求和。如
L = ∫[0,π/2]4a * sqrt(1-(e*cost)^2)dt≈2π√((a^2+b^2)/2) [椭圆近似周长], 其中a为椭圆长半轴,e为离心率
椭圆离心率的定义为椭圆上的点到某焦点的距离和该点到该焦点对应的准线的距离之比,设椭圆上点P到某焦点距离为PF,到对应准线距离为PL,则
e=PF/PL
椭圆的准线方程
x=±a^2/C
椭圆的离心率公式
e=c/a
椭圆的焦准距 :椭圆的焦点与其相应准线(如焦点(c,0)与准线x=+a^2/C)的距离,数值=b^2/c
椭圆焦半径公式 |PF1|=a+ex0 |PF2|=a-ex0
椭圆过右焦点的半径r=a-ex
过左焦点的半径r=a+ex
椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两焦点A,B之间的距离,数值=2b^2/a
点与椭圆位置关系 点M(x0,y0) 椭圆 x^2/a^2+y^2/b^2=1
点在圆内: x0^2/a^2+y0^2/b^2<1
点在圆上: x0^2/a^2+y0^2/b^2=1
点在圆外: x0^2/a^2+y0^2/b^2>1
直线与椭圆位置关系
y=kx+m ①
x^2/a^2+y^2/b^2=1 ②
由①②可推出x^2/a^2+(kx+m)^2/b^2=1
相切△=0
相离△<0无交点
相交△>0 可利用弦长公式:A(x1,y1) B(x2,y2)
|AB|=d = √(1+k^2)|x1-x2| = √(1+k^2)[(x1+x2)^2 - 4x1x2] = √(1+1/k^2)|y1-y2| = √(1+1/k^2)[(y1+y2)^2 - 4y1y2]
椭圆通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦)公式:2b^2/a
椭圆是一种圆锥曲线(也有人叫圆锥截线的)
1、平面上到两点距离之和为定值的点的集合(该定值大于两点间距离,一般称为2a)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距);
2、平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。这两个定义是等价的
标准方程
高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程中的“标准”指的是中心在原点,对称轴为坐标轴。
椭圆的标准方程有两种,取决于焦点所在的坐标轴:
1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1 (a>b>0)
2)焦点在Y轴时,标准方程为:x^2/b^2+y^2/a^2=1 (a>b>0)
其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长.短半轴的关系:b^2=a^2-c^2 ,准线方程是x=a^2/c和x=-a^2/c
又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。既标准方程的统一形式。
椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ
标准形式的椭圆在x0,y0点的切线就是 : xx0/a^2+yy0/b^2=1
椭圆的面积公式
S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长).
或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长).
椭圆的周长公式
椭圆周长没有公式,有积分式或无限项展开式。
椭圆周长(L)的精确计算要用到积分或无穷级数的求和。如
L = ∫[0,π/2]4a * sqrt(1-(e*cost)^2)dt≈2π√((a^2+b^2)/2) [椭圆近似周长], 其中a为椭圆长半轴,e为离心率
椭圆离心率的定义为椭圆上的点到某焦点的距离和该点到该焦点对应的准线的距离之比,设椭圆上点P到某焦点距离为PF,到对应准线距离为PL,则
e=PF/PL
椭圆的准线方程
x=±a^2/C
椭圆的离心率公式
e=c/a
椭圆的焦准距 :椭圆的焦点与其相应准线(如焦点(c,0)与准线x=+a^2/C)的距离,数值=b^2/c
椭圆焦半径公式 |PF1|=a+ex0 |PF2|=a-ex0
椭圆过右焦点的半径r=a-ex
过左焦点的半径r=a+ex
椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两焦点A,B之间的距离,数值=2b^2/a
点与椭圆位置关系 点M(x0,y0) 椭圆 x^2/a^2+y^2/b^2=1
点在圆内: x0^2/a^2+y0^2/b^2<1
点在圆上: x0^2/a^2+y0^2/b^2=1
点在圆外: x0^2/a^2+y0^2/b^2>1
直线与椭圆位置关系
y=kx+m ①
x^2/a^2+y^2/b^2=1 ②
由①②可推出x^2/a^2+(kx+m)^2/b^2=1
相切△=0
相离△<0无交点
相交△>0 可利用弦长公式:A(x1,y1) B(x2,y2)
|AB|=d = √(1+k^2)|x1-x2| = √(1+k^2)[(x1+x2)^2 - 4x1x2] = √(1+1/k^2)|y1-y2| = √(1+1/k^2)[(y1+y2)^2 - 4y1y2]
椭圆通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦)公式:2b^2/a
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
2013-08-10
展开全部
1.回答椭圆的两个定义。焦点在x轴和y轴上的椭圆的标准方程各是什么形式?
2.代数中研究函数图像时都需要研究函数的哪些性质?
由于方程与函数都是描述图形和图像上的点所满足的关系的,二者之间存在着必然的联系,因此我们可以用类比研究函数图像的方法,根据椭圆的定义,图形和方程来研究椭圆的几何性质。
现在我们有三个工具:椭圆的两个定义,图形和标准方程,下面我们就分别从研究定义,图形,方程出发看看能获得哪些性质。
(一) 从定义方面研究:
1.焦点
2.椭圆的第二定义,准线方程及离心率
点M(x,y)与定点F(-c,0)的距离和它到定直线L:x=-a2/c的距离的比是常数c/a,(a>c>0),求点M的轨迹。
求轨迹方程的方法,步骤是什么?
到定点距离与到定直线的距离的比等于定值e (0<e<1)的点的轨迹叫椭圆。
我们把定值e=c/a(0<e<1) 叫做椭圆的离心率。
随着离心率的变化,椭圆的形状发生了怎样的变化?
当e越接近于1时,c越接近于a,从而b越小,因此椭圆越扁;反之,e越接近于0,从而b越接近于a,椭圆越接近于圆。可见离心率是刻画椭圆圆扁程度的量。
我们把定直线L:x= 叫做椭圆的准线。一个椭圆有几条准线?
(二) 从标准方程研究
3.椭圆的顶点:
曲线与坐标轴的交点叫做曲线的顶点。同时我们把AA1,BB1分别叫做椭圆的长轴和短轴。另外我们将a,b叫半长轴长和半短轴长。
(三)从椭圆的图形和方程方面研究。
4.椭圆的范围:椭圆位于一个矩形内。
5.椭圆的对称性:
椭圆既关于坐标轴对称,又关于原点对称。
椭圆的定义和标准方程的形式决定了椭圆的对称性质。
例一:求椭圆16x2+25y2=400的长轴,短轴的长,焦点,顶点的坐标,准线方程和离心率
例二:我国发射的第一k颗人造地球卫星的运行轨道是以地球中心为一个焦点的椭圆,近地点A距地面439千米,远地点B距地面2384千米,地球半径6371千米,求卫星的轨道方程。
例三:椭圆的方程 ,椭圆上一点P到左焦点的距离为15,求椭圆的一点P到两条准线的距离。
例四;已知椭圆的长轴长为5,一条准线方程为x=-10,求椭圆的标准方程。
小结;1.知识方面:1)椭圆内切于矩形,且它是以x轴,y轴为对称轴的轴对称图形,又是以原点为对称中心的对称图形。因此,画它的图形时,只要画出第一象限的部分,其余可由对称性得出。
2).在讨论椭圆性质时,应首先根据方程判断此长轴的位置,然后再讨论其它性质;(判断方法是“大小分长短,即哪个字母下面的数大,焦点就在哪个轴上)
3).常数e(离心率)是焦距与长轴长的比值,与坐标轴的选择无关。
4).关于准线,根据椭圆的对称性,对于焦点在x轴上的椭圆 的准线方程为x ,对于焦点在y轴上的椭圆
的准线方程为y
2.方法方面:1)给出方程会求椭圆的几何性质。
2)会用待定系数法根据条件求椭圆的方程。
练习:1。设椭圆中心在原点,它在x轴上的一个焦点与短轴两端点所连焦半径互相垂直,且此焦点距长轴较近的端点的距离为 ,求椭圆的方程。
2.直线y= 为椭圆的准线,其短轴长为2 ,求椭圆的标准方程。
3.根据下列条件求出椭圆的标准方程。
1) 中心在原点,焦点在x轴上,焦距为6,离心率为3/5。
2) 中心在原点,对称轴在坐标轴,长轴长是短轴长的2倍,且过点(2,-6)。
3) 求下列椭圆的焦点,顶点坐标,离心率,准线方程,长,短轴长。1)9x2+4y2=1 2)
2.代数中研究函数图像时都需要研究函数的哪些性质?
由于方程与函数都是描述图形和图像上的点所满足的关系的,二者之间存在着必然的联系,因此我们可以用类比研究函数图像的方法,根据椭圆的定义,图形和方程来研究椭圆的几何性质。
现在我们有三个工具:椭圆的两个定义,图形和标准方程,下面我们就分别从研究定义,图形,方程出发看看能获得哪些性质。
(一) 从定义方面研究:
1.焦点
2.椭圆的第二定义,准线方程及离心率
点M(x,y)与定点F(-c,0)的距离和它到定直线L:x=-a2/c的距离的比是常数c/a,(a>c>0),求点M的轨迹。
求轨迹方程的方法,步骤是什么?
到定点距离与到定直线的距离的比等于定值e (0<e<1)的点的轨迹叫椭圆。
我们把定值e=c/a(0<e<1) 叫做椭圆的离心率。
随着离心率的变化,椭圆的形状发生了怎样的变化?
当e越接近于1时,c越接近于a,从而b越小,因此椭圆越扁;反之,e越接近于0,从而b越接近于a,椭圆越接近于圆。可见离心率是刻画椭圆圆扁程度的量。
我们把定直线L:x= 叫做椭圆的准线。一个椭圆有几条准线?
(二) 从标准方程研究
3.椭圆的顶点:
曲线与坐标轴的交点叫做曲线的顶点。同时我们把AA1,BB1分别叫做椭圆的长轴和短轴。另外我们将a,b叫半长轴长和半短轴长。
(三)从椭圆的图形和方程方面研究。
4.椭圆的范围:椭圆位于一个矩形内。
5.椭圆的对称性:
椭圆既关于坐标轴对称,又关于原点对称。
椭圆的定义和标准方程的形式决定了椭圆的对称性质。
例一:求椭圆16x2+25y2=400的长轴,短轴的长,焦点,顶点的坐标,准线方程和离心率
例二:我国发射的第一k颗人造地球卫星的运行轨道是以地球中心为一个焦点的椭圆,近地点A距地面439千米,远地点B距地面2384千米,地球半径6371千米,求卫星的轨道方程。
例三:椭圆的方程 ,椭圆上一点P到左焦点的距离为15,求椭圆的一点P到两条准线的距离。
例四;已知椭圆的长轴长为5,一条准线方程为x=-10,求椭圆的标准方程。
小结;1.知识方面:1)椭圆内切于矩形,且它是以x轴,y轴为对称轴的轴对称图形,又是以原点为对称中心的对称图形。因此,画它的图形时,只要画出第一象限的部分,其余可由对称性得出。
2).在讨论椭圆性质时,应首先根据方程判断此长轴的位置,然后再讨论其它性质;(判断方法是“大小分长短,即哪个字母下面的数大,焦点就在哪个轴上)
3).常数e(离心率)是焦距与长轴长的比值,与坐标轴的选择无关。
4).关于准线,根据椭圆的对称性,对于焦点在x轴上的椭圆 的准线方程为x ,对于焦点在y轴上的椭圆
的准线方程为y
2.方法方面:1)给出方程会求椭圆的几何性质。
2)会用待定系数法根据条件求椭圆的方程。
练习:1。设椭圆中心在原点,它在x轴上的一个焦点与短轴两端点所连焦半径互相垂直,且此焦点距长轴较近的端点的距离为 ,求椭圆的方程。
2.直线y= 为椭圆的准线,其短轴长为2 ,求椭圆的标准方程。
3.根据下列条件求出椭圆的标准方程。
1) 中心在原点,焦点在x轴上,焦距为6,离心率为3/5。
2) 中心在原点,对称轴在坐标轴,长轴长是短轴长的2倍,且过点(2,-6)。
3) 求下列椭圆的焦点,顶点坐标,离心率,准线方程,长,短轴长。1)9x2+4y2=1 2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-08-10
展开全部
设椭圆方程为x�0�5/a�0�5+y�0�5/b�0�5=1,焦点为F1(c,0),F2(-c,0)(c>0)
设A(x,y)为椭圆上一点
则AF1=√[(x-c)�0�5+y�0�5]
设准线为x=f
则A到准线的距离L为│f-x│
设AF1/L=e则
(x-c)�0�5+y�0�5=e�0�5(f-x)�0�5
化简得(1-e�0�5)x�0�5-2xc+c�0�5+y�0�5-e�0�5f�0�5+2e�0�5fx=0
令2c=2e�0�5f
则f=c/e�0�5
令该点为右顶点则(c/e�0�5-a)e=a-c
当e=c/a时上式成立
故f=a�0�5/c
则方程为(1-e�0�5)x�0�5+y�0�5=e�0�5f�0�5-c�0�5
与原椭圆方程对比则
a�0�5=(e�0�5f�0�5-c�0�5)/(1-e�0�5),b�0�5=e�0�5f�0�5-c�0�5
a�0�5=(c�0�5/e�0�5-c�0�5)/(1-e�0�5),b�0�5=c�0�5/e�0�5-c�0�5
a�0�5-b�0�5=(c�0�5/e�0�5-c�0�5)e�0�5/(1-e�0�5)=c�0�5
设A(x,y)为椭圆上一点
则AF1=√[(x-c)�0�5+y�0�5]
设准线为x=f
则A到准线的距离L为│f-x│
设AF1/L=e则
(x-c)�0�5+y�0�5=e�0�5(f-x)�0�5
化简得(1-e�0�5)x�0�5-2xc+c�0�5+y�0�5-e�0�5f�0�5+2e�0�5fx=0
令2c=2e�0�5f
则f=c/e�0�5
令该点为右顶点则(c/e�0�5-a)e=a-c
当e=c/a时上式成立
故f=a�0�5/c
则方程为(1-e�0�5)x�0�5+y�0�5=e�0�5f�0�5-c�0�5
与原椭圆方程对比则
a�0�5=(e�0�5f�0�5-c�0�5)/(1-e�0�5),b�0�5=e�0�5f�0�5-c�0�5
a�0�5=(c�0�5/e�0�5-c�0�5)/(1-e�0�5),b�0�5=c�0�5/e�0�5-c�0�5
a�0�5-b�0�5=(c�0�5/e�0�5-c�0�5)e�0�5/(1-e�0�5)=c�0�5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询