求初一至初三数学题10道
求初一至初三数学题10道,最好是有点难度的,但不要太难,还有顺便告诉我答案在哪,到时候我还可以去对!谢啦!...
求初一至初三数学题10道,最好是有点难度的,但不要太难,还有顺便告诉我答案在哪,到时候我还可以去对!谢啦!
展开
展开全部
初一
1.某班有若干学生住宿,若每间住4人,则有20人没宿舍住;若每间住8人则有一间没有住满人,试求该班宿舍间数及住宿人数?
2.小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,这时,爸爸的脚仍然着地。后来,小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果小宝和妈妈的脚着地。猜猜小宝的体重约有多少千克?(精确到1千克)
3.已知某工厂现有70米,52米的两种布料。现计划用这两种布料生产A、B两种型号的时装共80套,已知做一套A、B型号的时装所需的布料如下表所示,利用现有原料,工厂能否完成任务?若能,有几种生产方案?请你设计出来。
70米 52米
A 0.6米 0.9米
B 1.1米 0.4米
4.用若干辆载重量为七吨的汽车运一批货物,若每辆汽车只装4吨,则剩下10吨货物,若每辆汽车装满7吨,则最后一辆汽车不满也不空。请问:有多少辆汽车?
5.已知利民服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M,N两种型号的时装共80套,已知做一套M型号时装需A种布料0.6米,B种布料0.9米;做一套N型号时装需A种布料1.1米,B种布料0.4米;若设生产N型号的时装套数为X,用这批布料生产这两种型号的时装有几种方案
答案
解:设有x间房,y人。
则有4x+20=y........1
8x-8<y<8x......2
由上述二式得8x-8<4x+20<8x
解得x=6,y=44
解:设小宝体重为x千克。
则有2x+x<72
2x+x+6>72
由上述两式可得22<x<24
所以x=23
解:设A产品x套,B产品套。
则有x+y=80
0.6x+1.1y<=70
0.9x+0.4y<=52
有上述三式得36<=x<=40
所以x=36,37,38,39,40
所以能完成任务x=36,y=44;x=37,y=43;x=38,y=42;x=39,y=41;x=40,y=40;
解:设有x辆汽车,y顿货物。
则有4x+10=y
7x-7<y<7x
有上述两式得10/3<=x<=17/3
所以x=4,5
所以有四辆或五辆汽车。
解:设M时装x套,N时装y套。
则有x+y=80
0.6x+1.1y<=70
0.9x+0.4y<=52
有上述三式得36<=x<=40
所以x=36,37,38,39,40
所以x=36,y=44;x=37,y=43;x=38,y=42;x=39,y=41;x=40,y=40;
初二
1。已知m.n为实数。切满足m=[根号2(n^2-9)]+[根号2(9-n^2+4)]÷(n-3)。求6m-3n的值。答案:
m={[根号2(n^2-9)]+[根号2(9-n^2)]+4}÷(n-3)
根号下的数大于等于0
所以n^2-9>=0,9-n^2>=0
n^2-9和9-n^2是相反数
都大于等于0,则只有都等于0
所以n^2-9=0,n^2=9
n=3或-3
n-3是除数,不能等于0
所以n不等于3
所以n=-3
此时根号2(n^2-9)=0,根号2(9-n^2)=0
所以m=(0+0+4)/(-3-3)=-2/3
所以6m-3n=6(-2/3)-3*(-3)=-4+9=5
---------------------------------------------------------------------
2.已知关于x的方程2x^2-2(m+1)+m^2-1=0有两个实数根,求m的取值范围。如果一次项系数小于零,是确定m的所有整数解。(不会看答案)
答案;2x^2-2(m+1)+m^2-1=0有两个实数根
4(m+1)^2-8(m^2-1)>0
m的取值范围:
-1<m<3
如果一次项系数小于零,
m+1>0
m>-1
m=0,1,2
初三
1.某人往返于A、B两地,去时先行2千米,再乘车行10千米,回来时骑自行车所用的时间恰好与去时一样,已知汽车每小时比人步行多走16千米,这人骑自行车比步行每小时多走8千米。问人步行的速度是多少?
2.某工程,甲单独做恰好在规定的期限内完成,乙独做要超过规定定期限3天才完成,现由甲、乙合作两天,剩下的工程由乙去做,恰好在规定期限内完成,问规定的期限是多少天?
1 解方程
2/x+10/(x+16)=12/(x+8)
令y=x+8可以简化计算
得y=12,x=4
即人步行的速度是4km/h.
2 设工程量为m,甲的工作速度为a,乙为b,规定的期限是x天.
有m=ax
m=b(x+3)
m=2(a+b)+(x-2)b
解得a=3/2b,x=6,规定的期限是6天
3.某轮船以正常的速度向某港口行驶,走完路程的2/3时,机器发生故障,是每小时的速度减少5海里,直到停泊在这个港口,所用的时间,和另一次用每小时减少3海里的速度驶完全程所用的时间相同,求这艘轮船的正常速度
?
路程S 正常速度V
两次时间相等:(2/3)*S/V+(1/3)*S/(V-5)=S/(V-3)
消去S解分式方程:V=90/42
4.甲乙两地相距160千米,一辆长途汽车从甲地开出3小时后,一辆小轿车也从甲地开出,结果小轿车比长途汽车晚20分钟到达乙地,又知小轿车的速度是长途汽车速度的3倍,求两车的速度各是多少?
设长途汽车的速度为x,则小轿车的速度为3x,
则有160/x(长途车的时间)-160/3x(小轿车的时间)=8/3(单位是分钟,因为长途汽车共开了小轿车的时间+3个小时-20分钟)
解出x=40千米/小时
所以轿车速度为120千米每小时
5\要求生产7200顶帐篷后计划有变要求生产总值比原计划多20%且需提前4天实际比原计划每天多生产720顶问实际每天生产多少顶帐篷 ?
解:设实际每天生产x顶帐篷,根据题意可得
7200/(x-720)-7200*(1+20%)/x=4
解得x=1440
即实际每天生产1440顶帐篷
6、重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求这两种商品每千克的价值。
7、某客车从甲地到乙地走全长480Km的高速公路,从乙地到甲地走全长600Km的普通公路。又知在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从乙地到甲地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
8、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。已知B的速度是A的速度的3倍,求两车的速度。
9、一台甲型拖拉机4天耕完一块地的一半,加一台乙型拖拉机,两台合耕,1天耕完这块地的另一半。乙型拖拉机单独耕这块地需要几天?
10、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。求A、B每小时各做多少个零件。
1.某班有若干学生住宿,若每间住4人,则有20人没宿舍住;若每间住8人则有一间没有住满人,试求该班宿舍间数及住宿人数?
2.小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,这时,爸爸的脚仍然着地。后来,小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果小宝和妈妈的脚着地。猜猜小宝的体重约有多少千克?(精确到1千克)
3.已知某工厂现有70米,52米的两种布料。现计划用这两种布料生产A、B两种型号的时装共80套,已知做一套A、B型号的时装所需的布料如下表所示,利用现有原料,工厂能否完成任务?若能,有几种生产方案?请你设计出来。
70米 52米
A 0.6米 0.9米
B 1.1米 0.4米
4.用若干辆载重量为七吨的汽车运一批货物,若每辆汽车只装4吨,则剩下10吨货物,若每辆汽车装满7吨,则最后一辆汽车不满也不空。请问:有多少辆汽车?
5.已知利民服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M,N两种型号的时装共80套,已知做一套M型号时装需A种布料0.6米,B种布料0.9米;做一套N型号时装需A种布料1.1米,B种布料0.4米;若设生产N型号的时装套数为X,用这批布料生产这两种型号的时装有几种方案
答案
解:设有x间房,y人。
则有4x+20=y........1
8x-8<y<8x......2
由上述二式得8x-8<4x+20<8x
解得x=6,y=44
解:设小宝体重为x千克。
则有2x+x<72
2x+x+6>72
由上述两式可得22<x<24
所以x=23
解:设A产品x套,B产品套。
则有x+y=80
0.6x+1.1y<=70
0.9x+0.4y<=52
有上述三式得36<=x<=40
所以x=36,37,38,39,40
所以能完成任务x=36,y=44;x=37,y=43;x=38,y=42;x=39,y=41;x=40,y=40;
解:设有x辆汽车,y顿货物。
则有4x+10=y
7x-7<y<7x
有上述两式得10/3<=x<=17/3
所以x=4,5
所以有四辆或五辆汽车。
解:设M时装x套,N时装y套。
则有x+y=80
0.6x+1.1y<=70
0.9x+0.4y<=52
有上述三式得36<=x<=40
所以x=36,37,38,39,40
所以x=36,y=44;x=37,y=43;x=38,y=42;x=39,y=41;x=40,y=40;
初二
1。已知m.n为实数。切满足m=[根号2(n^2-9)]+[根号2(9-n^2+4)]÷(n-3)。求6m-3n的值。答案:
m={[根号2(n^2-9)]+[根号2(9-n^2)]+4}÷(n-3)
根号下的数大于等于0
所以n^2-9>=0,9-n^2>=0
n^2-9和9-n^2是相反数
都大于等于0,则只有都等于0
所以n^2-9=0,n^2=9
n=3或-3
n-3是除数,不能等于0
所以n不等于3
所以n=-3
此时根号2(n^2-9)=0,根号2(9-n^2)=0
所以m=(0+0+4)/(-3-3)=-2/3
所以6m-3n=6(-2/3)-3*(-3)=-4+9=5
---------------------------------------------------------------------
2.已知关于x的方程2x^2-2(m+1)+m^2-1=0有两个实数根,求m的取值范围。如果一次项系数小于零,是确定m的所有整数解。(不会看答案)
答案;2x^2-2(m+1)+m^2-1=0有两个实数根
4(m+1)^2-8(m^2-1)>0
m的取值范围:
-1<m<3
如果一次项系数小于零,
m+1>0
m>-1
m=0,1,2
初三
1.某人往返于A、B两地,去时先行2千米,再乘车行10千米,回来时骑自行车所用的时间恰好与去时一样,已知汽车每小时比人步行多走16千米,这人骑自行车比步行每小时多走8千米。问人步行的速度是多少?
2.某工程,甲单独做恰好在规定的期限内完成,乙独做要超过规定定期限3天才完成,现由甲、乙合作两天,剩下的工程由乙去做,恰好在规定期限内完成,问规定的期限是多少天?
1 解方程
2/x+10/(x+16)=12/(x+8)
令y=x+8可以简化计算
得y=12,x=4
即人步行的速度是4km/h.
2 设工程量为m,甲的工作速度为a,乙为b,规定的期限是x天.
有m=ax
m=b(x+3)
m=2(a+b)+(x-2)b
解得a=3/2b,x=6,规定的期限是6天
3.某轮船以正常的速度向某港口行驶,走完路程的2/3时,机器发生故障,是每小时的速度减少5海里,直到停泊在这个港口,所用的时间,和另一次用每小时减少3海里的速度驶完全程所用的时间相同,求这艘轮船的正常速度
?
路程S 正常速度V
两次时间相等:(2/3)*S/V+(1/3)*S/(V-5)=S/(V-3)
消去S解分式方程:V=90/42
4.甲乙两地相距160千米,一辆长途汽车从甲地开出3小时后,一辆小轿车也从甲地开出,结果小轿车比长途汽车晚20分钟到达乙地,又知小轿车的速度是长途汽车速度的3倍,求两车的速度各是多少?
设长途汽车的速度为x,则小轿车的速度为3x,
则有160/x(长途车的时间)-160/3x(小轿车的时间)=8/3(单位是分钟,因为长途汽车共开了小轿车的时间+3个小时-20分钟)
解出x=40千米/小时
所以轿车速度为120千米每小时
5\要求生产7200顶帐篷后计划有变要求生产总值比原计划多20%且需提前4天实际比原计划每天多生产720顶问实际每天生产多少顶帐篷 ?
解:设实际每天生产x顶帐篷,根据题意可得
7200/(x-720)-7200*(1+20%)/x=4
解得x=1440
即实际每天生产1440顶帐篷
6、重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求这两种商品每千克的价值。
7、某客车从甲地到乙地走全长480Km的高速公路,从乙地到甲地走全长600Km的普通公路。又知在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从乙地到甲地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
8、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。已知B的速度是A的速度的3倍,求两车的速度。
9、一台甲型拖拉机4天耕完一块地的一半,加一台乙型拖拉机,两台合耕,1天耕完这块地的另一半。乙型拖拉机单独耕这块地需要几天?
10、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。求A、B每小时各做多少个零件。
展开全部
2011年山东省临沂市中考数学试卷,答案在网上有,没有的话问我也可
一、选择题(本大题共14小题,毎小题3分,共42分)在每小题所给的四个选项中.只有一项是符合题目要求的。
1、(2011•临沂)下列各数中,比﹣1小的数是( )
A、0 B、1
C、﹣2 D、2
2、(2011•临沂)下列运算中正确的是( )
A、(﹣ab)2=2a2b2 B、(a+b)2=a2+1
C、a6÷a2=a3 D、2a3+a3=3a3
3、(2011•临沂)如图.己知AB∥CD,∠1=70°,则∠2的度数是( )
A、60° B、70°
C、80° D、110
4、(2011•临沂)计算﹣6+的结果是( )
A、3﹣2 B、5﹣
C、5﹣ D、2
5、(2011•临沂)化简(x﹣)÷(1﹣)的结果是( )
A、 B、x﹣1
C、 D、
6、(2011•临沂)如图,⊙O的直径CD=125px,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OD=3:5.则AB的长是( )
A、50px B、75px
C、100px D、2cm
7、(2011•临沂)在一次九年级学生视力检查中.随机检查了8个人的右眼视力,结果如下:4.0,4.2,4.5,4.0,4.4,4.5,4.0,4.8.则下列说法中正确的是( )
A、这组数据的中位数是4.4 B、这组数据的众数是4.5
C、这组数据的平均数是4.3 D、这组数据的极差是0.5
8、(2011•临沂)不等式组的解集是( )
A、x≥8 B、3<x≤8
C、0<x<2 D、无解
9、(2011•临沂)如图是一圆锥的主视图,则此圆锥的侧面展开图的圆心角的度数是( )
A、60° B、90°
C、120° D、180°
10、(2011•临沂)如图,A、B是数轴上两点.在线段AB上任取一点C,则点C到表示﹣1的点的距离不大于2的概率是( )
A、 B、
C、 D、
11、(2011•临沂)如图.△ABC中,AC的垂直平分线分别交AC、AB于点D、F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是( )
A、2 B、3
C、4 D、4
12、(2011•临沂)如图,梯形ABCD中,AD∥BC,AB=CD.AD=2,BC=6,∠B=60°,则梯形ABCD的周长是( )
A、12 B、14
C、16 D、18
13、(2011•临沂)如图,△ABC中,cosB=,sinC=,AC=5,则△ABC的面积是( )
A、 B、12
C、14 D、21
14、(2011•临沂)甲、乙两同学同时从400m环形跑道上的同一点出犮,同向而行.甲的速度为6m/s,乙的速度为4m/s.设经过x(单位:s)后,跑道上此两人间的较短部分的长度为y(单位:m).则y与x(0≤x≤300)之间的函数关系可用图象表示为( )
A、 B、
C、 D、
二、填空题(本大题共5小题.毎小越3分.共15分)把答案填在题中横线上.
15、(2011•临沂)分解因式:9a﹣ab2= .
16、(2011•临沂)方程的解是 .
17、(2011•临沂)有3人携带会议材料乘坐电梯,这3人的体重共210kg.毎梱材料重20kg.电梯最大负荷为1050kg,则该电梯在此3人乘坐的情况下最多还能搭载 捆材枓.
18、(2011•临沂)如图,▱ABCD,E是BA延长线上一点,AB=AE,连接CE交AD于点F,若CF平分∠BCD,AB=3,则BC的长为 .
19、(2011•临沂)如图,上面各图都是用全等的等边三角形拼成的一组图形.则在第10个这样的图形中共有 100 个等腰梯形.
三、开动脑筋,你一定能做对!(本大题共3小题,共20分)
20、(2011•临沂)某中学为了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一类),并根据调查结果制作了尚不完整的频数分布表:
类别
频数(人数)
频率
文学
m
0.42
艺术
22
0.11
科普
66
n
其他
28
合计
1
(1)表中m= ,n= ;
(2)在这次抽样调查中,最喜爱阅读哪类读物的学生最多?最喜爱阅读哪类读物的学生最少?
(3)根据以上调查,试估计该校1200名学生中最喜爱阅读科普类读物的学生有多少人?
21、(2011•临沂)去年秋季以来,我市某镇遭受百年一遇的特大旱灾,为支援该镇抗旱,上级下达专项抗旱资金80万元用于打井,已知用这80万元打灌溉用井和生活用井共58口,每口灌溉用井和生活用井分别需要资金4万元和0.2万元,求这两种井各打多少口?
22、(2011•临沂)如图,△ABC中,AB=AC,AD、CD分别是△ABC两个外角的平分线.
(1)求证:AC=AD;
(2)若∠B=60°,求证:四边形ABCD是菱形.
四、认臭思考.你一定能成功!(本大题共2小题.共19分)
23、(2011•临沂)如图.以O为圆心的圆与△AOB的边AB相切于点C.与OB相交于点D,且OD=BD,己知sinA=,AC=.
(1)求⊙O的半径:
(2)求图中阴影部分的面枳.
24、(2011•临沂)如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(﹣3,n)两点.
(1)求一次函数与反比例函数的解析式;
(2)根据所给条件,请直接写出不等式kx+b>的解集;
(3)过点B作BC⊥x轴,垂足为C,求S△ABC.
25、(2011•临沂)如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角扳的一边交CD于点F.另一边交CB的延长线于点G.
(1)求证:EF=EG;
(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:
(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求的值.
26、(2011•临沂)如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.
(1)求抛物线的解析式;
(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;
(3)P是抛物线上的第一象限内的动点,过点P作PMx轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
一、选择题(本大题共14小题,毎小题3分,共42分)在每小题所给的四个选项中.只有一项是符合题目要求的。
1、(2011•临沂)下列各数中,比﹣1小的数是( )
A、0 B、1
C、﹣2 D、2
2、(2011•临沂)下列运算中正确的是( )
A、(﹣ab)2=2a2b2 B、(a+b)2=a2+1
C、a6÷a2=a3 D、2a3+a3=3a3
3、(2011•临沂)如图.己知AB∥CD,∠1=70°,则∠2的度数是( )
A、60° B、70°
C、80° D、110
4、(2011•临沂)计算﹣6+的结果是( )
A、3﹣2 B、5﹣
C、5﹣ D、2
5、(2011•临沂)化简(x﹣)÷(1﹣)的结果是( )
A、 B、x﹣1
C、 D、
6、(2011•临沂)如图,⊙O的直径CD=125px,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OD=3:5.则AB的长是( )
A、50px B、75px
C、100px D、2cm
7、(2011•临沂)在一次九年级学生视力检查中.随机检查了8个人的右眼视力,结果如下:4.0,4.2,4.5,4.0,4.4,4.5,4.0,4.8.则下列说法中正确的是( )
A、这组数据的中位数是4.4 B、这组数据的众数是4.5
C、这组数据的平均数是4.3 D、这组数据的极差是0.5
8、(2011•临沂)不等式组的解集是( )
A、x≥8 B、3<x≤8
C、0<x<2 D、无解
9、(2011•临沂)如图是一圆锥的主视图,则此圆锥的侧面展开图的圆心角的度数是( )
A、60° B、90°
C、120° D、180°
10、(2011•临沂)如图,A、B是数轴上两点.在线段AB上任取一点C,则点C到表示﹣1的点的距离不大于2的概率是( )
A、 B、
C、 D、
11、(2011•临沂)如图.△ABC中,AC的垂直平分线分别交AC、AB于点D、F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是( )
A、2 B、3
C、4 D、4
12、(2011•临沂)如图,梯形ABCD中,AD∥BC,AB=CD.AD=2,BC=6,∠B=60°,则梯形ABCD的周长是( )
A、12 B、14
C、16 D、18
13、(2011•临沂)如图,△ABC中,cosB=,sinC=,AC=5,则△ABC的面积是( )
A、 B、12
C、14 D、21
14、(2011•临沂)甲、乙两同学同时从400m环形跑道上的同一点出犮,同向而行.甲的速度为6m/s,乙的速度为4m/s.设经过x(单位:s)后,跑道上此两人间的较短部分的长度为y(单位:m).则y与x(0≤x≤300)之间的函数关系可用图象表示为( )
A、 B、
C、 D、
二、填空题(本大题共5小题.毎小越3分.共15分)把答案填在题中横线上.
15、(2011•临沂)分解因式:9a﹣ab2= .
16、(2011•临沂)方程的解是 .
17、(2011•临沂)有3人携带会议材料乘坐电梯,这3人的体重共210kg.毎梱材料重20kg.电梯最大负荷为1050kg,则该电梯在此3人乘坐的情况下最多还能搭载 捆材枓.
18、(2011•临沂)如图,▱ABCD,E是BA延长线上一点,AB=AE,连接CE交AD于点F,若CF平分∠BCD,AB=3,则BC的长为 .
19、(2011•临沂)如图,上面各图都是用全等的等边三角形拼成的一组图形.则在第10个这样的图形中共有 100 个等腰梯形.
三、开动脑筋,你一定能做对!(本大题共3小题,共20分)
20、(2011•临沂)某中学为了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一类),并根据调查结果制作了尚不完整的频数分布表:
类别
频数(人数)
频率
文学
m
0.42
艺术
22
0.11
科普
66
n
其他
28
合计
1
(1)表中m= ,n= ;
(2)在这次抽样调查中,最喜爱阅读哪类读物的学生最多?最喜爱阅读哪类读物的学生最少?
(3)根据以上调查,试估计该校1200名学生中最喜爱阅读科普类读物的学生有多少人?
21、(2011•临沂)去年秋季以来,我市某镇遭受百年一遇的特大旱灾,为支援该镇抗旱,上级下达专项抗旱资金80万元用于打井,已知用这80万元打灌溉用井和生活用井共58口,每口灌溉用井和生活用井分别需要资金4万元和0.2万元,求这两种井各打多少口?
22、(2011•临沂)如图,△ABC中,AB=AC,AD、CD分别是△ABC两个外角的平分线.
(1)求证:AC=AD;
(2)若∠B=60°,求证:四边形ABCD是菱形.
四、认臭思考.你一定能成功!(本大题共2小题.共19分)
23、(2011•临沂)如图.以O为圆心的圆与△AOB的边AB相切于点C.与OB相交于点D,且OD=BD,己知sinA=,AC=.
(1)求⊙O的半径:
(2)求图中阴影部分的面枳.
24、(2011•临沂)如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(﹣3,n)两点.
(1)求一次函数与反比例函数的解析式;
(2)根据所给条件,请直接写出不等式kx+b>的解集;
(3)过点B作BC⊥x轴,垂足为C,求S△ABC.
25、(2011•临沂)如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角扳的一边交CD于点F.另一边交CB的延长线于点G.
(1)求证:EF=EG;
(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:
(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求的值.
26、(2011•临沂)如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.
(1)求抛物线的解析式;
(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;
(3)P是抛物线上的第一象限内的动点,过点P作PMx轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y=(x+1)/(x-1)^2 找y' y'' y''' y'''' ....
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询