已知函数f(x)=(x-1)^2,g(x)=4(x-1),数列An满足a1=2,且(an+1-an)g(an)+f(an)=0
展开全部
(1)
(a(n+1)-an)g(an)+f(an)=0
(a(n+1)-an)[4(an -1)]+(an -1)^2=0
(4a(n+1).an - 4a(n+1) - 4(an)^2 + 4an) +( (an)^2 -2an +1) =0
4a(n+1) . ( an -1 ) = 3(an)^2-2an-1
= (3an+1)(an-1)
a(n+1) = (3an+1)/4
(2)
a(n+1) = (3an+1)/4
a(n+1) -1 = (3/4)( an -1)
=>{ an-1}是等比数列
(a(n+1)-an)g(an)+f(an)=0
(a(n+1)-an)[4(an -1)]+(an -1)^2=0
(4a(n+1).an - 4a(n+1) - 4(an)^2 + 4an) +( (an)^2 -2an +1) =0
4a(n+1) . ( an -1 ) = 3(an)^2-2an-1
= (3an+1)(an-1)
a(n+1) = (3an+1)/4
(2)
a(n+1) = (3an+1)/4
a(n+1) -1 = (3/4)( an -1)
=>{ an-1}是等比数列
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询