设f(X)是定义在R上的函数,求证f(x)总可以写成一个奇函数与一个偶函数的形式
2013-08-16
展开全部
证明:对任意函数f(x),构造两个函数,g(x),h(x)
其中,g(x)=(f(x)-f(-x))/2
h(x)=(f(x)+f(-x))/2
由于g(-x)=(f(-x)-f(x))/2=-g(-x)
h(-x)=(f(-x)+f(x))/2=h(x)
所以g(x)为奇函数,h(x)为偶函数
g(x)+h(x)=(f(x)-f(-x))/2 + (f(x)+f(-x))/2 = f(x)
所以对于任意定义域关于原点对称的函数f(x)都可以写成一个奇函数与一个偶函数的和
其中,g(x)=(f(x)-f(-x))/2
h(x)=(f(x)+f(-x))/2
由于g(-x)=(f(-x)-f(x))/2=-g(-x)
h(-x)=(f(-x)+f(x))/2=h(x)
所以g(x)为奇函数,h(x)为偶函数
g(x)+h(x)=(f(x)-f(-x))/2 + (f(x)+f(-x))/2 = f(x)
所以对于任意定义域关于原点对称的函数f(x)都可以写成一个奇函数与一个偶函数的和
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-08-16
展开全部
f(x)总可以写成一个奇函数与一个偶函数的形式其中把f(x)所有奇次项组成奇函数,把所有偶次项组成偶函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询