
2个回答
展开全部
设x=atant t=arctan(x/a)
=1/a*∫cos^2t/cos2t *sec^2tdt=1/2a*∫1/cos2td2t
=ln |tan2t+sec2t| + C t=arctan(x/a)
--------------------
设 u=tant=x/a
tan2t=2u/1-u^2
sec2t=1/cos2x=1+u^2/1-u^2
tan2t+sec2t=(1+u)^2/(1-u^2)
-------------------
=2ln(1+x/a)-ln(1-(x/a)^2)+C
=2ln|a+x|-ln|a^2-x^2|+C
=1/a*∫cos^2t/cos2t *sec^2tdt=1/2a*∫1/cos2td2t
=ln |tan2t+sec2t| + C t=arctan(x/a)
--------------------
设 u=tant=x/a
tan2t=2u/1-u^2
sec2t=1/cos2x=1+u^2/1-u^2
tan2t+sec2t=(1+u)^2/(1-u^2)
-------------------
=2ln(1+x/a)-ln(1-(x/a)^2)+C
=2ln|a+x|-ln|a^2-x^2|+C
追问
答案不对呀
追答
中间环节出错了。。、
=1/a*∫cos^4t/cos^2(2t) *sec^2tdt=(1/4a)*∫(1+cos2t)/cos^2(2t)d2t=(1/4a)*∫1/cos^2(2t)+1/cos2t d(2t)
=(1/4a)*{tan2t+ln |tan2t+sec2t|} + C
t=arctan(x/a)
--------------------
设 u=tant=x/a
tan2t=2u/1-u^2
sec2t=1/cos2x=1+u^2/1-u^2
tan2t+sec2t=(1+u)^2/(1-u^2)
-------------------
=(1/4a)*{2ax/(a^2-x^2)+2ln(1+x/a)-ln(1-(x/a)^2)}+C
=(x/2a)/(a^2-x^2)+(1/2a)ln|a+x|-(1/4a)ln|a^2-x^2|+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询