费马对数论的贡献 40

Thank-you... Thank-you 展开
 我来答
孤雁残心
2013-08-17 · 超过11用户采纳过TA的回答
知道答主
回答量:49
采纳率:0%
帮助的人:18.9万
展开全部
17世纪初,欧洲流传着公元三世纪古希腊数学家丢番图所写的《算术》一书。l621年费马在巴黎买到此书,他利用业余时间对书中的不定方程进行了深入研究。费马将不定方程的研究限制在整数范围内,从而开始了数论这门数学分支。费马在数论领域中的成果是巨大的,其中主要有:费马大定理:n>2是整数,则方程x^n+y^n=z^n没有满足xyz≠0的整数解。这个是不定方程,它已经由英国数学家怀尔斯证明了(1995年),证明的过程是相当艰深的!费马小定理:a^p-a≡0(mod p),其中p是一个素数,a是正整数,它的证明比较简单。事实上它是Euler定理的一个特殊情况,Euler定理是说:a^φ(n)-1≡0(mod n),a,n都是正整数,φ(n)是Euler函数,表示和n互素的小于n的正整数的个数(它的表达式欧拉已经得出,可以在“Euler公式”这个词条里找到)。另外还有:(1)全部大于2的素数可分为4n+1和4n+3两种形式。(2)形如4n+1的素数能够,而且只能够以一种方式表为两个平方数之和。(3)没有一个形如4n+3的素数,能表示为两个平方数之和。(4)形如4n+1的素数能够且只能够作为一个直角边为整数的直角三角形的斜边;4n+1的平方是且只能是两个这种直角三角形的斜边;类似地,4n+1的m次方是且只能是m个这种直角三角形的斜边。(5)边长为有理数的直角三角形的面积不可能是一个平方数。(6)4n+1形的素数与它的平方都只能以一种方式表达为两个平方数之和;它的3次和4次方都只能以两种表达为两个平方数之和;5次和6次方都只能以3种方式表达为两个平方数之和,以此类推,直至无穷。(7)发现了第二对亲和数:17296和18416。十六世纪,已经有人认为自然数里就仅有一对亲和数:220和284。有一些无聊之士,甚至给亲和数抹上迷信色彩或者增添神秘感,编出了许许多多神话故事。还宣传这对亲和数在魔术、法术、占星术和占卦上都有重要作用等等。距离第一对亲和数诞生2500多年以后,历史的车轮转到十七世纪,1636年,法国“业余数学家之王”费马找到第二对亲和数17296和18416,重新点燃寻找亲和数的火炬,在黑暗中找到光明。两年之后,“解析几何之父”——法国数学家勒奈·笛卡儿(René Descartes)于1638年3月31日也宣布找到了第三对亲和数9437506和9363584。费马和笛卡尔在两年的时间里,打破了二千多年的沉寂,激起了数学界重新寻找亲和数的波涛。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式