费马数的猜想结论
1732年,欧拉算出F5=641×6700417,也就是说F5不是质数,宣布了费马的这个猜想不成立,它不能作为一个求质数的公式。以后,人们又陆续找到了不少反例,如n=6 时,F6= =274177×67280421310721不是质数。至今这样的反例共找到了243个,却还没有找到第6个正面的例子,也就是说只有n=0,1,2,3,4这5个情况下,Fn才是质数。甚至有人猜想:费马数n>4时,费马数全是合数!
接下来的几个费马数的分解情况是:
F6 = 274177 × 67280421310721
F7 = 59649589127497217 × 5704689200685129054721
F8 = 1238926361552897 ×934616397153 57977769163558199606896584051237541638188580280321
F9 = 2424833 × 7455602825647884208337395736200454918783366342657 × 74164006262753080152 47871419019374740599407810975190239058213 161444157 59504705008092818711693940737
F10 = 45592577 × 6487031809 × 4659775785220018543264560743076778、192897 × P252
F11 = 319489 × 974849 × 167988556341760475137 × 3560841906445833920513 × P564
F12 = 114689 × 26017793 × 63766529 × 190274191361 × 12561 32134125569 ×
568630647535356955169033410940867804839360742060818433 × C1133
F13 = 2710954639361 × 2663848877152141313 × 3603109844542291969 ×
319546020820551643220672513 × C2391
早已经有人证明,费马数的因数必然是2n+2*k+1 形。例如n=5时,4294967297=(128×5+1)×(128×52347+1),其中128就是2的7次方。