数学平面几何问题
如图在梯形ABCD中AD//BC,分别以两腰AB,CD为边作正方形ABEG和正方形DCHF,连接EF,设线段EF的中点为M,求证:MA=MD。(详细解答或清晰思路)...
如图在梯形ABCD中AD//BC,分别以两腰AB,CD为边作正方形ABEG和正方形DCHF,连接EF,设线段EF的中点为M,求证:MA=MD。(详细解答或清晰思路)
展开
3个回答
展开全部
证明:过点A作AQ⊥BC于Q,过点D作DT⊥BC于T,过点E作EP⊥AD交DA的延长线于点P,过点F作FS⊥AD的延长线于S,过点M作MN⊥AD于N
∵AQ⊥BC,DH⊥BC,AD∥BC
∴矩形AQHD
∴AQ=AH,∠AQB=∠AHC=90, ∠PAQ=90
∴∠BAQ+∠BAP=90
∵正方形ABGE
∴AE=AB,∠BAE=90
∴∠EAP+∠BAP=90
∴∠EAP=∠BAQ
∵EP⊥AD
∴∠APE=∠AQB
∴△ABQ≌△AEP (AAS)
∴AP=AQ
同理可证DS=DT
∴AP=DS
∵EP⊥AD,FS⊥AD,MN⊥AD
∴EP∥MN∥FS
∵M是EF的中点
∴MN是梯形EFSP的中位线
∴PN=SN
∵PN=AP+AN,SN=DS+DN
∴AP+AN=DS+DN
∴AN=DN
∴MN垂直平分AD
∴MA=MD
这是我之前的解答,有图:
http://zhidao.baidu.com/question/574102933.html
∵AQ⊥BC,DH⊥BC,AD∥BC
∴矩形AQHD
∴AQ=AH,∠AQB=∠AHC=90, ∠PAQ=90
∴∠BAQ+∠BAP=90
∵正方形ABGE
∴AE=AB,∠BAE=90
∴∠EAP+∠BAP=90
∴∠EAP=∠BAQ
∵EP⊥AD
∴∠APE=∠AQB
∴△ABQ≌△AEP (AAS)
∴AP=AQ
同理可证DS=DT
∴AP=DS
∵EP⊥AD,FS⊥AD,MN⊥AD
∴EP∥MN∥FS
∵M是EF的中点
∴MN是梯形EFSP的中位线
∴PN=SN
∵PN=AP+AN,SN=DS+DN
∴AP+AN=DS+DN
∴AN=DN
∴MN垂直平分AD
∴MA=MD
这是我之前的解答,有图:
http://zhidao.baidu.com/question/574102933.html
追问
用向量如何解
追答
哦,我只会初中的方法
展开全部
证明:过M作MN⊥AD于N,过F作FQ⊥MN于Q,过E作EP⊥MN于P,过D作DH⊥FQ于H,交BC于I
在△FHD与△DIC中,∠F=90°-∠FDH=∠CDI,∠FHD=∠DIC=90°,DF=DC,
∴△FHD≌△DIC,
∴FH=DI,
∴FQ=FH+HQ=DI+DN
同理可得,EP=DI+AN,
在△EPM和△FQM中,∠EPM=∠FQM=90°,∠EMP=∠FMQ,EM=FM
∴Rt△EPM≌Rt△FQM,
∴EP=FQ,
∴AN=DN,
在△FHD与△DIC中,∠F=90°-∠FDH=∠CDI,∠FHD=∠DIC=90°,DF=DC,
∴△FHD≌△DIC,
∴FH=DI,
∴FQ=FH+HQ=DI+DN
同理可得,EP=DI+AN,
在△EPM和△FQM中,∠EPM=∠FQM=90°,∠EMP=∠FMQ,EM=FM
∴Rt△EPM≌Rt△FQM,
∴EP=FQ,
∴AN=DN,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询