3个回答
2013-08-19
展开全部
一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数 它实际上就是指数函数的反函数,可表示为x=a^y。因此指数函数里对于a的规定,同样适用于对数函数。对数的公理化定义 真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零, 底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1? 【在一个普通对数式里 a<0,或=1 的时候是会有相应b的值的。但是,根据对数定义: log以a为底a的对数;如果a=1或=0那么log以a为底a的对数就可以等于一切实数(比如log1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:loga M^n = nloga M 如果a<0,那么这个等式两边就不会成立 (比如,log(-2) 4^(-2) 就不等于(-2)*log(-2) 4;一个等于4,另一个等于-4)】 通常我们将以10为底的对数叫常用对数(common logarithm),并把log10N记为lgN。另外,在科学技术中常使用以无理数e=2.71828···为底数的对数,以e为底的对数称为自然对数(natural logarithm),并且把loge N 记为In N. 根据对数的定义,可以得到对数与指数间的关系: 当a 〉0,a≠ 1时,a^x=N→X=logaN。 由指数函数与对数函数的这个关系,可以得到关于对数的如下结论: 负数和零没有对数 loga 1=0 log以a为底a的对数为1(a为常数) 编辑本段对数的定义和运算性质 一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log(a)(N)=b,其中a叫做对数的底数,N叫做真数。 底数则要>0且≠1 真数>0 对数的运算性质 当a>0且a≠1时,M>0,N>0,那么: (1)log(a)(MN)=log(a)(M)+log(a)(N); (2)log(a)(M/N)=log(a)(M)-log(a)(N); (3)log(a)(M^n)=nlog(a)(M) (n∈R) (4)log(a^n)(M)=1/nlog(a)(M)(n∈R) (5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1) (6)a^(log(b)n)=n^(log(b)a) 证明: 设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a) (7)对数恒等式:a^log(a)N=N; log(a)a^b=b (8)由幂的对数的运算性质可得(推导公式) 1.log(a)M^(1/n)=(1/n)log(a)M , log(a)M^(-1/n)=(-1/n)log(a)M 2.log(a)M^(m/n)=(m/n)log(a)M , log(a)M^(-m/n)=(-m/n)log(a)M 3.log(a^n)M^n=log(a)M , log(a^n)M^m=(m/n)log(a)M 4.log(以 n次根号下的a 为底)(以 n次根号下的M 为真数)=log(a)M , log(以 n次根号下的a 为底)(以 m次根号下的M 为真数)=(n/m)log(a)M 5.log(a)b×log(b)c×log(c)a=1 对数与指数之间的关系 当a>0且a≠1时,a^x=N x=㏒(a)N 编辑本段对数函数 对数函数的图形只不过是指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。 (1) 对数函数的定义域为大于0的实数集合。 (2) 对数函数的值域为全部实数集合。 (3) 函数图像总是通过(1,0)点。 (4) a大于1时,为单调增函数,并且上凸;a大于0小于1时,函数为单调减函数,并且下凹。 (5) 显然对数函数无界。 对数函数的常用简略表达方式: (1)log(a)(b)=log(a)(b) (2)lg(b)=log(10)(b) (3)ln(b)=log(e)(b) 对数函数的运算性质: 如果a〉0,且a不等于1,M>0,N>0,那么: (1)log(a)(MN)=log(a)(M)+log(a)(N); (2)log(a)(M/N)=log(a)(M)-log(a)(N); (3)log(a)(M^n)=nlog(a)(M) (n属于R) (4)log(a^k)(M^n)=(n/k)log(a)(M) (n属于R) 对数与指数之间的关系 当a大于0,a不等于1时,a的X次方=N等价于log(a)N=x log(a^k)(M^n)=(n/k)log(a)(M) (n属于R) 换底公式 (很重要) log(a)(N)=log(b)(N)/log(b)(a)= lnN/lna=lgN/lga ln 自然对数 以e为底 e为无限不循环小数(约为2.718281828454590) lg 常用对数 以10为底 编辑本段常用简略表达方式 (1)常用对数:lg(b)=log(10)(b) (2)自然对数:ln(b)=log(e)(b) e=2.718281828454590... 通常情况下只取e=2.71828 对数函数的定义 对数函数的一般形式为 y=㏒(a)x,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=a^y。因此指数函数里对于a的规定(a>0且a≠1),右图给出对于不同大小a所表示的函数图形: 关于y轴对称、 可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。 编辑本段性质 定义域求解:对数函数y=loga x 的定义域是{x ︳x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意真数大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需满足{x>0且x≠1} 。 {2x-1>0 ,x>1/2且x≠1},即其定义域为 {x ︳x>1/2且x≠1}值域:实数集R 定点:函数图像恒过定点(1,0)。 单调性:a>1时,在定义域上为单调增函数,并且上凸 0<a<1时,在定义域上为单调减函数,并且下凹。 奇偶性:非奇非偶函数,或者称没有奇偶性。 周期性:不是周期函数 零点:x=1 注意:负数和0没有对数。 两句经典话:底真同对数正 底真异对数负。 指数函数的求导: e的定义:e=lim(x→∞)(1+1/x)^x=2.718281828...设a>0,a!=1----(log a(x))'=lim(Δx→∞)((log a(x+Δx)-log a(x))/Δx)=lim(Δx→∞)(1/x*x/Δx*log a((x+Δx)/x))=lim(Δx→∞)(1/x*log a((1+Δx/x)^(x/Δx)))=1/x*lim(Δx→∞)(log a((1+Δx/x)^(x/Δx)))=1/x*log a(lim(Δx→0)(1+Δx/x)^(x/Δx))=1/x*log a(e)特殊地,当a=e时,(log a(x))'=(ln x)'=1/x。----设y=a^x两边取对数ln y=xln a两边对求x导y'/y=ln ay'=yln a=a^xln a特殊地,当a=e时,y'=(a^x)'=(e^x)'=e^xln e=e^x。
2013-08-19
展开全部
对数函数的性质图像,还有就是指数函数的图像,主要掌握一下函数与方程思想,还有数形结合思想,图像之间的转化,还有导数哪方面的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-08-19
展开全部
记住公式,多联系几个题目呀,万无一失
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询