回归方程怎么求

 我来答
惠企百科
2022-12-01 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部
以此题为例讲解:以下是某地搜集到得新房屋的销售价格y和房屋的面积x的数据:\x0d\x0a房屋面积115,110,80,135,105 \x0d\x0a销售价格:24.8 21.6 18.4 29.2 22\x0d\x0a①求回归方程,并在散点图中加上回归直线; 回归方程 ^y = 1.8166 + 0.1962x \x0d\x0a计算过程:\x0d\x0a从散点图(题目有给吧)看出x和y呈线性相关,题中给出的一组数据就是相关变量x、y的总体中的一个样本,我们根据这组数据算出回归方程的两个参数,便可以得到样本回归直线,即与散点图上各点最相配合的直线。\x0d\x0a下面是运用最小二乘法估计一元线性方程^y = a + bx的参数a和b:\x0d\x0a(a为样本回归直线y的截距,它是样本回归直线通过纵轴的点的y坐标;b为样本回归直线的斜率,它表示当x增加一个单位时y的平均增加数量,b又称回归系数)\x0d\x0a首先列表求出解题需要的数据\x0d\x0a n 1 2 3 4 5 ∑(求和) \x0d\x0a房屋面积 x 115 110 80 135 105 545\x0d\x0a销售价格 y 24.8 21.6 18.4 29.2 22 116\x0d\x0a x^2(x的平方) 13225 12100 6400 18225 11025 60975 \x0d\x0a y^2(y的平方) 615.04 466.56 338.56 852.64 484 2756.8\x0d\x0a xy 2852 2376 1472 3942 2310 12952\x0d\x0a套公式计算参数a和b:\x0d\x0a Lxy = ∑xy - 1/n*∑x∑y = 308 \x0d\x0a Lxx = ∑x^2 - 1/n*(∑x)^2 = 1570 \x0d\x0a Lyy = ∑y^2 - 1/n*(∑y)^2 = 65.6 \x0d\x0a x~(x的平均数) = ∑x/n = 109 \x0d\x0a y~ = ∑y/n = 23.2 \x0d\x0a b = Lxy/Lxx = 0.196178344 \x0d\x0a a = y~ - bx~ = 1.81656051 \x0d\x0a回归方程 ^y = a + bx \x0d\x0a代入参数得:^y = 1.8166 + 0.1962x \x0d\x0a 直线就不画了 \x0d\x0a 该题是最基本的一元线性回归分析题,套公式即可解答。至于公式是怎么推导出来的,请参见应用统计学教科书。。回归分析章节。。
12345A帮助
2014-01-14 · TA获得超过123万个赞
知道顶级答主
回答量:65.3万
采纳率:0%
帮助的人:44.7亿
展开全部

回归方程怎么求

直接按照题目把所给的几个函数图像画出来(要准确,一般都是几条直线)
然后求是直线的上还是下,比如说:
x-y-1>0,那就先把直线x-y-1=0画出来
再代个点(不要是这条直线上的点)进去,比如说(0,0)带进去,得到“0-0-1>0”
显然不成立。(0,0)在这条直线的上方,不成立,所以x-y-1>0是代表在直线x-y-1=0的下方的区域
或者:把x-y-1>0换成y<x-1
很容易看出来y<x-1表示在直线y=x-1下方的区域
同样地,其它的区域也是照着这么画。
注意因为是“>”“<”,所以直线上的点都取不到,因此最后要把这条直线画成虚线,再画阴影确定区域,这点非常容易疏忽,也是最容易扣分的地方
画完之后,因为“{”表示交集的意思,所以你真正最后所要画的是这几个区域都有覆盖的区域

高考题一般就是给你的区域求出来后是个三角形,于是就有这片区域的界限和顶点了

基本常见的题型是目标函数z=f(x,y)。以下举例:求出来后这个区域的三个顶点为(1,1)、(1,3)、(2,2),边界上的每个点都可以取得到
一般逃不过这3种考法:
①.z=ax+by型:
首先要先知道,初中所谓的一般一次函数方程y=kx+b与y轴的交点是(0,b),斜率k
比如说:z=2x+y
解法:y= -2x-z与y轴的交点是(0,-z),斜率为-2
         (若出现因为不知道-z的值,所以难以下手的问题,不要急,先画直线y=-2x)
     画出直线y=-2x后,再将这条直线上下平移,保证直线经过这片区域,看看符合的直线y=-2x-z的极限是哪两条。(平移的时候可以用尺子的就很容易看出来了)
     看得出来,当直线过点(1,1)与(2,2)取得“极限”,
        带进去,当直线经过点(1,1)的时候交y轴于最低点(0,-z1),经过点(2,2)与y轴交于最高点(0,-z2)
        从而求出z1,z2
        或者直接将(1,1)与(2,2)带进去求得这两个“z ”的大小,求的一个z是-3,一个是-6,于是z∈[-6,-3]
以此类推。。。。。。
②.z=(ax+b)/(cy+d)型:
   基本概念:过点(x1,y1)与(x2,y2)(x1≠x2)的直线斜率k=(y1-y2)/(x1-x2)=(y2-y1)/(x2-x1)
     比如z=y/(x+1)
     就看成是z=(y-0)/(x - -1)
    z是过点(x,y)与(-1,0)的直线的斜率,其中(x,y)在区域内,另一个点是 定点(0,-1)
    所以就先将(-1,0)标出来,用尺子移动这个斜率且过这个定点,就可以看出来,过点(1,1)时斜率最小,过点(1,3)时斜率最大
  将这两个点带进去就行了。
  反之,如果是z=(x+1)/y,就把z看做是过定点(-1,0)的斜率的倒数。正数范围内,数越大,倒数越小,所以......
③.z=(x-a)²+(y-b)²型:
  基本知识:(x-a)²+(y-b)²=r²表示圆心为点(a,b)、半径为r的圆(如果r=0,就表示点(a,b))
  比如说,z=(x-1)²+(y-1)²是圆心为点(1,1)、半径为根号z的圆(或点),因此一下子就看出来
z∈[0,√2](注意这个圆(或点)必须过这片区域)
    有的并不是这么容易看出来的,比如说z=x²+y²
圆心在(0,0),那么半径的最值一定是当这个圆经过区域的顶点的时候取到的。(如果想知道为什么就自己找几个试试看看)
所以将点(1,1)、(1,3)、(2,2)带进去,算出这三个z哪个最大哪个最小,这就是z的取值范围
以上的这两个例子都是圆心不在区域里面的情况,如果是在这个三角形里面的话,那么最小值就是0,最大值同样还是经过点(1,1)或(1,3)或(2,2)时取到的,同样三个点带进去,就求出三个z的值,比较出里边的最大值z0,那么z∈[0,z0]

对于第二点,我再次提醒一下,我举的那个例子是在保证斜率>0的情况下才这么好看出来。有时候这个区域会在x轴下方,甚至是一部分在上方,一部分在下方。这就需要熟练记住直线斜率的规则了:(记直线y=kx)
k=0时,直线与x轴重合,
k>0【想象一下用一只手将直线在y轴的右侧开始往上掰】时直线是上升的,越倾斜的直线,斜率就越大,然后无限趋近于y轴时斜率为+∞
越过y轴后,k立马变为-∞,再将这个直线(在y轴左侧)往下“掰”,k又从-∞逐渐增大。
k<0【想象一下用一只手将直线在y轴的右侧开始往下掰】时直线是下降的,越倾斜的直线,斜率就越小,然后无限趋近于y轴时斜率为-∞
越过y轴后,k立马变为+∞,再将这个直线(在y轴左侧)往上“掰”,k又从+∞逐渐减小。

讲了这么多,应该还能撑得住吧???希望贵君能理解
最后说一下:一般关于现行回归的题目有可能会给你的是应用题,那就要像初中的物理一样先列出“已知”:就是依据题意设几个数(x与y等),从题目的已知条件中列出x与y等的关系式,再用上述的方法求。要注意:x与y本身也是有范围的,要写明!

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式